github link
Accession IconSRP098104

RNA sequencing of erythroid and granulomonocytic colonies differentiated from transduced bone marrow CD34+ cells expressing U2AF1 S34F mutation, U2AF1 wild-type or empty vector control

Organism Icon Homo sapiens
Sample Icon 30 Downloadable Samples
Technology Badge IconIllumina HiSeq 2500

Submitter Supplied Information

Description
Mutations of the splicing factor U2AF1 are frequent in the myeloid malignancy myelodysplastic syndromes (MDS) and in other cancers. Patients with MDS suffer from peripheral blood cytopenias, including anemia, and increasing bone marrow blasts. We investigated the impact of the common U2AF1 S34F mutation on cellular function and mRNA splicing in the main cell lineages affected in MDS. We demonstrated that U2AF1 S34F expression in human hematopoietic progenitors impairs erythroid differentiation, and skews granulomonocytic differentiation towards granulocytes. RNA-sequencing of erythroid and granulomonocytic colonies revealed that U2AF1 S34F induced a higher number of cassette exon splicing events in granulomonocytic than erythroid cells, and altered mRNA splicing of many transcripts (expressed in both cell types) in a lineage-specific manner. The introduction of isoform changes identified in the target genes H2AFY and STRAP into hematopoietic progenitors recapitulated phenotypes associated with U2AF1 S34F expression in erythroid and/or granulomonocytic cells, suggesting a causal link. Importantly, we provided evidence showing that isoform modulation of the U2AF1 S34F target genes H2AFY and STRAP rescues the erythroid differentiation defect in U2AF1 S34F MDS cells, raising the possibility of using splicing modulators therapeutically. These data have critical implications for understanding MDS phenotypic heterogeneity, and for the development of new targeted therapies. Overall design: RNA sequencing was performed to identify the aberrant splicing events associated with U2AF1 S34F mutation (n=3) compared to U2AF1 wild-type (n=3) and empty vector control (n=3) in BFU-E and CFU-G/M colonies respectively.
PubMed ID
Total Samples
30
Submitter’s Institution
No associated institution

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Subject
Processing Information
Additional Metadata
No rows found
Loading...