Description
Floodings already have a nearly 60% share in the worldwide damage to crops provoked by natural disasters. Climate change will cause plants to be even more frequently exposed to oxygen limiting conditions (hypoxia) in the near future due to heavy precipitation and concomitant waterlogging or flooding events in large areas of the world. Although the homeostatic regulation of adaptive responses to low oxygen stress in plants is well described, it remained unknown by which initial trigger the molecular response to low-oxygen stress is activated. Here, we show that a hypoxia-induced decline of the ATP level of the cell reduces LONG-CHAIN ACYL-COA SYNTHETASE (LACS) activity, which leads to a shift in the composition of the acyl-CoA pool. High oleoyl-CoA levels release the transcription factor RELATED TO APETALA 2.12 (RAP2.12) from its interaction partner ACYL-COA BINDING PROTEIN (ACBP) at the plasma membrane to induce low oxygen-specific gene expression. We show that different acyl-CoAs provoke unique molecular responses revealing a novel role as cellular signalling component also in plants. In terms of hypoxia signalling, dynamic acyl-CoA levels integrate the cellular energy status into the oxygen signalling cascade with ACBP and RAP2.12 being the central hub. The conserved nature of the ACBP:RAP2.12 module in crops and the novel mechanistic understanding of how low-oxygen stress responses are initiated by oleoyl-CoA in plants provide useful leads for enhancing future food security. Overall design: 1 control and 3 treatments with different forms of acyl-CoA in triplicate biological replicates