Description
Developmental neuronal remodeling is an evolutionarily conserved mechanism required for accurate wiring of mature nervous systems. Despite its fundamental role in neurodevelopment and proposed contribution to various neuropsychiatric disorders, the mechanisms instructing remodeling are only partially known. Here, we uncover the fine temporal transcriptional landscape of a stereotypic remodeling event - that of the Drosophila mushroom body ? neurons. To enrich and complement this developmental expression atlas, we also sequenced developing ? neurons perturbed for three key transcription factors known to regulate pruning. Together, these datasets allowed us to construct the developmental and temporal framework of transcriptional modules that together drive remodeling. Moreover, we identified 10 DNA binding proteins that are involved in various aspects of remodeling, and describe their hierarchical relationships. Overall, this study provides the first broad and detailed molecular insight into the complex regulatory dynamics of developmental neuronal remodeling. Overall design: Transcriptional profiling of drosophila ? neurons during development and when perturbed by EcR-DN, E75 RNAi or Sox14 RNAi. Other adult neurons and astrocyte-like cells also sequenced.