Description
Alterations to corticostriatal glutamatergic function are early pathophysiological changes associated with Huntington?s disease (HD). The factors that regulate the maintenance of corticostriatal glutamatergic synapses post-developmentally are not well understood. Recently, the striatum-enriched transcription factor Foxp2 was implicated in the development of these synapses. Here we show that, in mice, overexpression of Foxp2 in the adult striatum of two models of HD leads to rescue of HD-associated behaviors, while knockdown of Foxp2 in wild-type mice leads to development of HD-associated behaviors. We note that Foxp2 encodes the longest polyglutamine repeat protein in the human reference genome, and we show that it can be sequestered into aggregates with polyglutamine-expanded mutant Huntingtin protein (mHTT). Foxp2 overexpression in HD model mice leads to altered expression of several genes associated with synaptic function, genes which present new targets for normalization of corticostriatal dysfunction in HD. Overall design: 4 mice per group of each: Con+Con, Con+Foxp2, BACHD+Con, BACHD+Foxp2 Foxp2 or Control virus was injected into BACHD and Control mice, mRNA was isolated and sequenced