Description
We analysed the combined effects of exposure to maternal diabetes and disrupted HIF-1 signaling on the transcriptom in cardiac left ventricles of 12 weeks old male mice. This approach provides the information about the long term changes originating in utero due to maternal diabetes and inefficient response to hypoxia which develops as a result of hyperglycemia. The majority of changes were detected in Hif1a insufficient mice exposed to maternal diabetes. Overall design: Streptozotocin induced diabetic FVB females were mated with non-diabetic males with global heterozygous deletion of Hif1a (Hif1a+/-). Total RNA was extracted from the LV of the hearts of 12-week-old male offspring in biological triplicates per each group (wt, non-diabetic pregnancy; wt, diabetic pregnancy; Hif1a+/-, non-diabetic pregnancy; Hif1a+/-, diabetic pregnancy). RNA profiles were generated by deep sequencing using Illumina NextSeq.