github link
Accession IconSRP139607

Defining the transcriptome of T cells transduced with FOXP3fl or FOXP3d2

Organism Icon Homo sapiens
Sample Icon 9 Downloadable Samples
Technology Badge IconIon Torrent Proton

Submitter Supplied Information

Description
Rationale - Regulatory T (Treg) cells suppress immune responses and have been shown to attenuate atherosclerosis. The Treg cell lineage specification factor FOXP3 is essential for Treg cells' ability to uphold immunological tolerance. In humans, FOXP3 exists in several different isoforms, however, their specific role is poorly understood. Objective - To define the regulation and functions of the two major FOXP3 isoforms, FOXP3fl and FOXP3?2, as well as to establish whether their expression is associated with ischemic atherosclerotic disease. Methods and Results - Human primary T-cells were transduced with lentiviruses encoding distinct FOXP3 isoforms. The phenotype and function of these cells were analyzed by flow cytometry, in vitro suppression assays and RNA-sequencing. We also assessed the effect of activation on Treg cells isolated from healthy volunteers. Treg cell activation resulted in increased FOXP3 expression that predominantly was made up of FOXP3?2. FOXP3?2 induced specific transcription of GARP, which functions by tethering the immunosuppressive cytokine TGF-ß to the cell membrane of activated Treg cells. RT-PCR was used to determine the impact of alternative splicing of FOXP3 in relation with atherosclerotic plaque stability in a cohort of over 150 patients that underwent carotid endarterectomy. Plaque instability was associated with a lower FOXP3?2 transcript usage, when comparing plaques from patients without symptoms and patients with occurrence of recent (<1 month) vascular symptoms including minor stoke, transient ischemic attack or amaurosis fugax. No difference was detected in total levels of FOXP3 mRNA between these two groups. Conclusions - These results suggest that activated Treg cells suppress the atherosclerotic disease process and that FOXP3?2 controls a transcriptional program that acts protectively in human atherosclerotic plaques. Overall design: In this experiment we have analyzed 3 groups of each 3 biological repliactes equalling 9 samples in total.
PubMed ID
Total Samples
9
Submitter’s Institution
No associated institution

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Subject
Processing Information
Additional Metadata
No rows found
Loading...