Description
Plant diseases induced by fungi are one of the most important limiting factors during pre- and post-harvest food production. For decades, synthetic chemical fungicides have been used to control these diseases, however, increase on worldwide regulatory policies and the demand to reduced their application, have led to search new ecofriendly alternatives such as the biostimulants. Commercial application of yeast as biocontrol, have shown low efficacy compared to synthetic fungicides, mostly due to the limited knowledge of the molecular mechanisms of yeast-induced responses. Interestingly, to date, only two genome-wide transciptomic analysis have been used to characterize the mode of action of biocontrols using the plant model Arabidopsis thaliana, missing, in our point of view, all its molecular and genomic potential. Here we described that compounds released by the biocontrol yeast Hanseniaspora opuntiae (HoFs) can protect Glycine max and Arabidopsis thaliana plants against the broad host-range necrotroph fungi Corynespora cassiicola and Botrytis cinerea, respectively. We show that HoFs have a long-lasting, dose-dependent local and systemic effect against Botrytis cinerea. Additionally, we performed a genome-wide transcriptomic analysis to identified HoFs-induced differentially expressed genes in Arabidopsis thaliana. Importantly, our work provides a novel and valuable information that can help the researchers to improve HoFs efficacy in order to become an ecofriendly alternative to synthetic fungicides Overall design: RNAseq from HOF-treated Arabidopsis thaliana leaves