github link
Accession IconSRP145419

Merkel Cells Activate Sensory Neural Pathways through Adrenergic Synapses

Organism Icon Mus musculus
Sample Icon 4 Downloadable Samples
Technology Badge IconIllumina HiSeq 1000

Submitter Supplied Information

Description
Epithelial-neuronal signaling is essential for sensory encoding in touch, itch and nociception; however, little is known about the release mechanisms and neurotransmitter receptors through which skin cells govern neuronal excitability. Merkel cells are mechanosensory epidermal cells that have long been proposed to activate neuronal afferents through chemical synaptic transmission. We employed a set of classical criteria for chemical neurotransmission as framework to directly test this hypothesis. RNA sequencing of adult Merkel cells demonstrated that they express presynaptic molecules and biosynthetic machinery for adrenergic transmission. Moreover, live-cell imaging directly demonstrated that Merkel cells mediate activity- and VMAT-dependent release of fluorescent catecholamine neurotransmitter analogues. Touch-evoked firing in Merkel-cell afferents was inhibited either by pre-synaptic silencing of SNARE-mediated vesicle release from Merkel cells or by neuronal deletion of b2-adrenergic receptors. Together, these results identify both pre- and postsynaptic mechanisms through which Merkel cells excite mechanosensory afferents to encode gentle touch. Overall design: RNA-seq of basal keratinocytes and Merkel cells purified with FACS
PubMed ID
Total Samples
4
Submitter’s Institution
No associated institution

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Sex
Specimen part
Cell line
Subject
Processing Information
Additional Metadata
No rows found
Loading...