github link
Accession IconSRP149158

Ribonucleotide excision repair is essential to prevent skin cancer [CD49f+ epidermal cells]

Organism Icon Mus musculus
Sample Icon 24 Downloadable Samples
Technology Badge IconIllumina HiSeq 2500

Submitter Supplied Information

Description
Large numbers of ribonucleotides are incorporated into the eukaryotic nuclear genome during S-phase due to imperfect discrimination against ribonucleoside triphosphates by the replicative DNA polymerases. Ribonucleotides, by far the most common DNA lesion in replicating cells, destabilize the DNA, and an evolutionarily conserved DNA repair machinery, ribonucleotide excision repair (RER), ensures ribonucleotide removal. Complete lack of RER is embryonically lethal. Partial loss-of-function mutations in the genes encoding subunits of RNase H2, the enzyme essential for initiation of RER, cause the SLE-related type I interferonopathy Aicardi-Goutières syndrome. Here we establish that selective inactivation of RER in mouse epidermis results in spontaneous DNA damage, epidermal hyperproliferation associated with loss of hair follicle stem cells and hair follicle function. The animals develop keratinocyte intraepithelial neoplasia and invasive squamous cell carcinoma with complete penetrance, despite potent type I interferon production and skin inflammation. Compromised RER-mediated genome maintenance might represent an important tumor-promoting principle in human cancer. Overall design: Keratinocytes (CD49f+) cells were isolated from skin cell suspensions by FACS. Total RNA was isolated using the RNeasy Mini Kit+ (Qiagen). mRNA libraries were prepared and subjected to deep sequencing on an Illumina®HiSeq.
PubMed ID
Total Samples
24
Submitter’s Institution
No associated institution

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Specimen part
Subject
Processing Information
Additional Metadata
No rows found
Loading...