github link
Accession IconSRP185984

MiR-145 antagonist effect in house dust mite model of asthma

Organism Icon Mus musculus
Sample Icon 30 Downloadable Samples
Technology Badge IconIllumina HiSeq 2500

Submitter Supplied Information

Description
Purpose: Identify whole lung gene expression patterns modified by nanoparticle delivery of an antisense LNA/DNA oligonucleotide targeting mmu-miR145a-5p and nontargeting oligonucleotides Methods: Lung gene expression profiles of 10 week old BALB/c female mice were generated by polyA RNA-seq with Illumina HiSeq v4. Sequence reads that passed quality filters after timming were analyzed at the gene level with RNA STAR, featureCounts and Deseq2 . qRT–PCR validation was performed using TaqMan and SYBR Green methods. Results: 10-15 million sequence reads per sample were mapped to the mouse genome (build mm10). Pathway analysis of differentially expressed genes identified upregulation of gene sets for human asthma, mouse lung allergic inflammation, Muc5ac regulated genes and smooth muscle genes after allergic sensitization. Gene level exppression in each asthma-related pathway was reduced by the miR-145 antagonist. The miR-145 antagonist and several nontargeting oligos also upregulated interferon signaling pathways suggesting a general antiinflammatory effect of LNA/DNA oligos in the lung. Conclusions: Lung-directed delivery of LNA/DNA oligonucleotides with cationic lipid nanoparticles is an efffective means to prevent inflammatory gene expression in a house dust mite model of asthma Overall design: Lung gene expression in unsensitized, house dust mite sensitized, antimiR-145 treated and nontargeting oligonucleotide treated mice
PubMed ID
Total Samples
30
Submitter’s Institution
No associated institution

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Age
Specimen part
Cell line
Subject
Processing Information
Additional Metadata
No rows found
Loading...