The 600kb BP4-BP5 16p11.2 CNV (copy number variant) is associated with neuroanatomical, neurocognitive and metabolic disorders. These recurrent rearrangements are associated with reciprocal phenotypes such as obesity and underweight, macro- and microcephaly, as well as autism spectrum disorder (ASD) and schizophrenia. Here we interrogated the transcriptome of individuals carrying reciprocal CNVs in 16p11.2.
A Potential Contributory Role for Ciliary Dysfunction in the 16p11.2 600 kb BP4-BP5 Pathology.
Sex, Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below. A subset of samples profiled in this analysis were also profiled in Series GSE68127, and GSE104066. Corresponding glomerular transcriptome data can be found under GEO ID: GSE108109.
Metabolic pathways and immunometabolism in rare kidney diseases.
Specimen part
View Samplessummary : Glomerular Transcriptome from European Renal cDNA Bank subjects and living donors. Samples included in this analysis have been previously analyzed using older CDF definitions and are included under previous GEO submissions - GSE47183 (chronic kidney disease samples), and GSE32591 (IgA nephropathy samples).
Metabolic pathways and immunometabolism in rare kidney diseases.
Specimen part, Disease
View Samplessummary : Tubulointerstitial transcriptome from ERCB subjects with chronic kidney disease and living donor biopsies. Samples included in this analysis have been previously analyzed using older CDF definitions and are included under previous GEO submissions - GSE47184 (chronic kidney disease samples), and GSE32591 (IgA nephropathy samples).
Metabolic pathways and immunometabolism in rare kidney diseases.
Specimen part, Disease
View SamplesTubulointerstitial transcriptome from human kidney biopsies in Neptune and ERCB. A number of samples profiled in this analysis were also profiled in Series GSE68127.
Metabolic pathways and immunometabolism in rare kidney diseases.
Specimen part
View SamplesGlomerular transcriptome from human kidney biopsies in Neptune and ERCB. A subset of samples profiled in this analysis were also profiled in Series GSE68127, and in GSE104066. Corresponding tubulointerstitial transcriptome data is submitted under GEO ID: GSE108113.
Metabolic pathways and immunometabolism in rare kidney diseases.
Specimen part
View SamplesAnaplastic Large Cell Lymphoma (ALCL) is a clinical and biological heterogeneous disease including ALK positive and ALK negative systemic forms. To discover biomarkers and/or genes involved in ALK negative ALCL pathogenesis, we applied the Cancer Outlier Profile Analysis (COPA) algorithm to a gene expression profiling data set including 249 cases of T-NHLs and normal T-cells. Ectopic co-expression of ERBB4 and COL29A1 genes was detected in 24% of ALK negative ALCL patients. RNA sequencing and 5'RNA Ligase Mediated Rapid Amplification of cDNA Ends (RLM-RACE) identified two novel ERBB4 truncated transcripts, displaying intronic Transcription Starting Sites. ERBB4 expression was confirmed at protein level by western blotting and immunohistochemistry. Moreover, by luciferase assays we defined that the expression of ERBB4 aberrant transcripts is promoted by endogenous intronic Long Terminal Repeats (LTRs). In conclusion, we identified a new subclass of ALK negative ALCL characterized by aberrant expression of ERBB4 truncated transcripts carrying intronic 5'UTRs.
Identification of a new subclass of ALK-negative ALCL expressing aberrant levels of ERBB4 transcripts.
Specimen part
View SamplesAnalysis of rapamycin effects on white adipose tissue at gene expression level. The hypothesis tested in the present study was that rapamycin could modify immune cell composition and inflammatory state of the adipose tissue of obese mice.
Beneficial metabolic effects of rapamycin are associated with enhanced regulatory cells in diet-induced obese mice.
Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Integrative epigenome-wide analysis demonstrates that DNA methylation may mediate genetic risk in inflammatory bowel disease.
Sex, Age, Specimen part, Subject
View SamplesEpigenetic alterations may provide important insights into gene-environment interaction in inflammatory bowel disease (IBD). Here we observe epigenome-wide DNA methylation differences in 240 newly-diagnosed IBD cases and 190 controls. These include 439 differentially methylated positions (DMPs) and 5 differentially methylated regions (DMRs), which we study in detail using whole genome bisulphite sequencing. We replicate the top DMP (RPS6KA2) and DMRs (VMP1, ITGB2, TXK) in an independent cohort.
Integrative epigenome-wide analysis demonstrates that DNA methylation may mediate genetic risk in inflammatory bowel disease.
Sex, Age, Specimen part
View Samples