refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 117 results
Sort by

Filters

Technology

Platform

accession-icon GSE2378
Normal and glaucomatous astrocytes
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95A Array (hgu95a)

Description

Astrocytes from optic nerve head from donors with and without glaucoma

Publication Title

Differential gene expression in astrocytes from human normal and glaucomatous optic nerve head analyzed by cDNA microarray.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE10211
Airway Epithelial Cell Response to Sendai virus infection
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Oligonucleotide microarrays were used to establish a profile for gene expression in wild-type airway epithelial cells after paramyxoviral infection.

Publication Title

Airway epithelial versus immune cell Stat1 function for innate defense against respiratory viral infection.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE3925
Virus Induced Airway Hyperreactivity and Goblet Cell Metaplasia Phenotypic Extremes (CB6F2/J)
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Mice representing phenotypic extremes of airway hyperreactivity and goblet cell metaplasia post-Sendai virus infection were identified from a 500 mouse F2 cohort (CB6F2/J). Whole lung RNA from 3 mice at each extreme was analyzed via microarray for gene expression. Subsequent pairwise comparisons between arrays allowed the identification of genes differentially expressed with respect to the disease phenotypes (airway hyperreactivity and goblet cell metaplasia).

Publication Title

Genetic segregation of airway disease traits despite redundancy of calcium-activated chloride channel family members.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP108025
Structural basis for human respiratory syncytial virus NS1-mediated modulation of host responses
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Human respiratory syncytial virus (hRSV) is a major cause of morbidity and mortality in the pediatric, elderly, and immune compromised populations. A gap in our understanding of hRSVdisease pathology is the interplay between virally encoded immune antagonists and host components that limit hRSV replication. hRSV encodes for non-structural (NS) proteins that are important immune antagonists; however, the role of these proteins in viral pathogenesis is incompletely understood. Here we report the crystal structure of hRSV NS1 protein, which suggests that NS1 is a structural paralog of hRSV matrix (M) protein. Comparative analysis of the shared structural fold with M revealed regions unique to NS1. Studies on NS1 WT or mutant alone or in recombinant RSVs demonstrate that structural regions unique to NS1 contribute to modulation of host responses, including inhibition of type I IFN responses, suppression of dendritic cell maturation, and promotion of inflammatory responses. Transcriptional profiles of A549 cells infected with recombinant RSVs show significant differences in multiple host pathways, suggesting that NS1 may have a greater role in regulating host responses than previously appreciated. These results provide a framework to target NS1 for therapeutic development to limit hRSV associated morbidity and mortality. Overall design: 12 samples where analysed. A549 cell line was infected with mock, hRSV or mutated hRSV virus. Samples are: control mock-infected (2 replicas), hRSV wild-type NS1 infected (3 replicas), hRSV NS1 1-118 infected (3 replicas), hRSV NS1 L132A/L133A infected (2 replicas) and hRSV NS1 Y125A infected (2 replicas). Libraries was prepared for 96 h.p.i.

Publication Title

Structural basis for human respiratory syncytial virus NS1-mediated modulation of host responses.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE61421
PARP9 and DTX3L in Antiviral Host Defense
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon (lluminamouse6v1.1expressionbeadchip[arrayaddressidversion), Illumina HumanHT-12 V4.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

PARP9-DTX3L ubiquitin ligase targets host histone H2BJ and viral 3C protease to enhance interferon signaling and control viral infection.

Sample Metadata Fields

Sex, Cell line, Treatment

View Samples
accession-icon GSE61413
Modified Stat1 Confers Enhanced Interferon Responsiveness and Improved Baseline Antiviral Host Defense
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon (lluminamouse6v1.1expressionbeadchip[arrayaddressidversion)

Description

U3A cells stably expressing wild-type STAT1 or STAT1-CC were treated with interferon beta (10U/ml) or control for 24 hours to assess effects of stat1 modifications, interferon, and the interaction on gene expression.

Publication Title

PARP9-DTX3L ubiquitin ligase targets host histone H2BJ and viral 3C protease to enhance interferon signaling and control viral infection.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE10964
Virus-Induced Airway Disease in Mice (C57BL/6J, d21/d49)
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

Analysis of gene expression in lungs of C57BL/6J mice that develop chronic airway disease phenotypes after a single Sendai virus infection, compared with mice treated with UV-inactivated virus.

Publication Title

Persistent activation of an innate immune response translates respiratory viral infection into chronic lung disease.

Sample Metadata Fields

Sex, Time

View Samples
accession-icon GSE37776
Genome-wide characterization of menin-dependent H3K4me3 reveals a specific role for menin in the regulation of genes implicated in MEN1-like tumors
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Genome-wide characterization of menin-dependent H3K4me3 reveals a specific role for menin in the regulation of genes implicated in MEN1-like tumors.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE37775
Genome-wide characterization of menin-dependent H3K4me3 reveals a specific role for menin in the regulation of genes implicated in MEN1-like tumors (mRNA)
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Inactivating mutations in the MEN1 gene predisposing to the multiple endocrine neoplasia type 1 (MEN1) syndrome can also cause sporadic pancreatic endocrine tumors. MEN1 encodes menin, a subunit of MLL1/MLL2-containing histone methyltransferase complexes that trimethylate histone H3 at lysine 4 (H3K4me3). The importance of menin-dependent H3K4me3 in normal and transformed pancreatic endocrine cells is unclear. To study the role of menin-dependent H3K4me3, we performed in vitro differentiation of wild-type as well as menin-null mouse embryonic stem cells (mESCs) into pancreatic islet-like endocrine cells (PILECs). Gene expression analysis and genome-wide H3K4me3 ChIP-Seq profiling in wild-type and menin-null mESCs and PILECs revealed menin-dependent H3K4me3 at the imprinted Dlk1-Meg3 locus in mESCs, and all four Hox loci in differentiated PILECs. Specific and significant loss of H3K4me3 and gene expression was observed for genes within the imprinted Dlk1-Meg3 locus in menin-null mESCs and the Hox loci in menin-null PILECs. Given that the reduced expression of genes within the DLK1-MEG3 locus and the HOX loci is associated with MEN1-like sporadic tumors, our data suggests a possible role for menin-dependent H3K4me3 at these genes in the initiation and progression of sporadic pancreatic endocrine tumors. Furthermore, our investigation also demonstrates that menin-null mESCs can be differentiated in vitro into islet-like endocrine cells, underscoring the utility of menin-null mESC-derived specialized cell types for genome-wide high-throughput studies.

Publication Title

Genome-wide characterization of menin-dependent H3K4me3 reveals a specific role for menin in the regulation of genes implicated in MEN1-like tumors.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE29004
Gene expression response to acrylamide in rat pups
  • organism-icon Rattus norvegicus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Acrylamide is a type-2 alkene monomer with established human neurotoxic effects. While the primary source of human exposure to acrylamide is occupational, other exposure sources include food, drinking water, and smoking. In this study, neurobehavioral assays coupled with transcriptional profiling analysis were conducted to assess both behavioral and gene expression effects induced by acrylamide neurotoxicity in rats when administered during early postnatal life. Acrylamide administration in rat pups induced significant characteristic neurotoxic symptoms including increased heel splay, decrease in grip strength, and decrease in locomotor activity. Transcriptome analysis with the Affymetrix Rat Genome 230 2.0 array indicated that acrylamide treatment caused a significant alteration in the expression of genes involved in muscle contraction, pain regulation, and dopaminergic neuronal pathways. First, in agreement with the observed behavioral effects, expression of the Mylpf gene involved in muscle contraction was downregulated in the spinal cord in response to acrylamide. Second, in sciatic nerves, acrylamide repressed the expression of the opioid receptor gene Oprk1 that is known to play a role in neuropathic pain regulation. Finally, in the cerebellum, acrylamide treatment caused a decrease in the expression of the nuclear receptor gene Nr4a2 that is required for development of dopaminergic neurons. Thus, our work examining the effect of acrylamide at the whole-genome level on a developmental mammalian model has identified novel genes previously not implicated in acrylamide neurotoxicity that can be further developed into biomarkers for assessing the risk of acrylamide exposure.

Publication Title

Neurobehavioral and transcriptional effects of acrylamide in juvenile rats.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact