Identifying immune correlates of protection and mechanisms of immunity accelerates and streamlines the development of vaccines. RTS,S/AS01E, the most advanced malaria vaccine, has moderate efficacy in African children. In contrast, immunization with sporozoites under antimalarial chemoprophylaxis (CPS immunization) can provide 100% sterile protection in naïve adults. We used systems biology approaches to identify correlates of vaccine-induced immunity based on transcriptomes of peripheral blood mononuclear cells from subjects immunized with RTS,S/AS01E or chemo-attenuated sporozoites stimulated with parasite antigens in vitro. Specifically, we used samples of subjects from two age cohorts and 3 African countries participating in an RTS,S/AS01E pediatric phase 3 trial and malaria-naïve subjects participating in a CPS trial. We identified both pre-immunization and post-immunization transcriptomic signatures correlating with protection. Signatures were validated in independent children and infants from the RTS,S/AS01E phase 3 trial and subjects from an independent CPS trial with high accuracies (>70%). Transcription modules revealed interferon, NF-B, TLR, and monocyte-related signatures associated with protection. Pre-immunization signatures suggest the potential for strategies to prime the immune system before vaccination towards improving vaccine immunogenicity and efficacy. Finally, signatures of protection could be useful to determine efficacy in clinical trials, accelerating vaccine candidate testing. Nevertheless, signatures should be tested more extensively across multiple cohorts and trials to demonstrate their universal predictive capacity.
Antigen-stimulated PBMC transcriptional protective signatures for malaria immunization.
Sex, Specimen part, Subject, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
In Silico Characterization of miRNA and Long Non-Coding RNA Interplay in Multiple Myeloma.
Specimen part, Disease
View SamplesThe identification of deregulated microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in multiple myeloma (MM) has progressively added a further level of complexity to MM biology. In addition, the cross-regulation between lncRNAs and miRNAs has begun to emerge, and theoretical and experimental studies have demonstrated the competing endogenous RNAs (ceRNAs) activity of lncRNAs as natural miRNA decoys in pathophysiological conditions, including cancer. Currently, information concerning lncRNA and miRNA interplay in MM is virtually absent. Herein, we investigated in silico the lncRNA and miRNA relationship in a representative datasets encompassing 95 MM and 30 plasma cell leukemia patients at diagnosis and in four normal controls, whose expression profiles were generated by a custom annotation pipeline to detect specific lncRNAs. We applied target prediction analysis based on miRanda and RNA22 algorithms to 235 lncRNAs and 459 miRNAs selected with a potential pivotal role in the pathology of MM. Among pairs that showed significant correlation between lncRNA and miRNA expression levels, we identified 10 lncRNA-miRNA relationships suggestive of novel ceRNA network with relevance in MM.
In Silico Characterization of miRNA and Long Non-Coding RNA Interplay in Multiple Myeloma.
Specimen part, Disease
View SamplesThe identification of deregulated microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in multiple myeloma (MM) has progressively added a further level of complexity to MM biology. In addition, the cross-regulation between lncRNAs and miRNAs has begun to emerge, and theoretical and experimental studies have demonstrated the competing endogenous RNAs (ceRNAs) activity of lncRNAs as natural miRNA decoys in pathophysiological conditions, including cancer. Currently, information concerning lncRNA and miRNA interplay in MM is virtually absent. Herein, we investigated in silico the lncRNA and miRNA relationship in a representative datasets encompassing 95 MM and 30 plasma cell leukemia patients at diagnosis and in four normal controls, whose expression profiles were generated by a custom annotation pipeline to detect specific lncRNAs. We applied target prediction analysis based on miRanda and RNA22 algorithms to 235 lncRNAs and 459 miRNAs selected with a potential pivotal role in the pathology of MM. Among pairs that showed significant correlation between lncRNA and miRNA expression levels, we identified 10 lncRNA-miRNA relationships suggestive of novel ceRNA network with relevance in MM.
In Silico Characterization of miRNA and Long Non-Coding RNA Interplay in Multiple Myeloma.
Specimen part, Disease
View SamplesMultiple myeloma (MM)-induced osteoclast (OC) formation occurs in close contact with MM cell infiltration into the bone marrow (BM) due to the imbalance of the receptor activator of NF-kappa-B ligand (RANKL)/osteoprotegerin (OPG) ratio in favor of RANKL in the micorenvironment. Soluble factors including CCL3/MIP-1?, IL7 and IL-3 also contribute to the increased OC formation in MM.The immunomodulatory drugs (IMiDs) directly inhibit OCs, however their effect on the mechanisms involved in MM-induced OC formation are not known and have been investigated in this study. We found that both Lenalidomide (LEN) and Pomalidomide (POM), at concentration ranging reached in vivo, significantly blunted RANKL up-regulation normalizing the RANKL/OPG ratio in human BM osteoprogenitor cells (PreOBs) co-cultured with MM cells and inhibited CCL3/MIP-1? production by MM cells. The reduction of CD49d expression on MM cells, a molecule critically involved in RANKL up-regulation in the micorenvironment, accompanied this effect. Consistently the pro-osteoclastogenic property of the conditioned medium of MM cells co-cultured with PreOBs was reduced in the presence of both IMiDs. By microarray analysis we further investigated the effect of POM and LEN on the transcriptional profile of both MM cells and PreOBs. We found a significant down-regulation in MM cells, in addition to CD49d, of genes belonging to the adhesion molecules family such as ITGA8 and ICAM2 (CD102) induced by both IMiDs compounds. In conclusion our data suggest that POM and LEN inhibits MM-induced OC formation through the inhibition of RANKL/OPG ratio targeting the expression of adhesion molecules by MM cells.
Immunomodulatory drugs lenalidomide and pomalidomide inhibit multiple myeloma-induced osteoclast formation and the RANKL/OPG ratio in the myeloma microenvironment targeting the expression of adhesion molecules.
Cell line, Treatment
View SamplesPIK3C3 and its product phosphatidylinositol 3-phosphate (PI(3)P) play critical roles in autophagy as well as vesicular trafficking. To fully compare the gene expression differences between wild-type and pik3c3 KO zebrafish, we performed RNAseq at 6dpf, 7dpf and 8dpf before mutant died. We found that homologs of barrier-function related human IBD susceptibility genes are suppressed while the inflammation response genes are stimulated in mutant, while genes involved in bacterial sensing and autophagy pathways are not affected. Thus, the pik3c3 mutant may serve as a valuable model for epithelial injury induced IBD. Overall design: mRNA profiles of wild type and pik3c3 KO zebrafish at indicated stages were generated by deep sequencing, using Illumina NextSeq500.
Deficiency in class III PI3-kinase confers postnatal lethality with IBD-like features in zebrafish.
Specimen part, Cell line, Subject
View SamplesKaryotypic instability, including numerical and structural chromosomal aberrations, represents a distinct feature of multiple myeloma (MM). 40-50% of patients displayed hyperdiploidy, defined by recurrent trisomies of non-random chromosomes. To characterize hyperdiploid (H) and nonhyperdiploid (NH) MM molecularly, we analyzed the gene expression profiles of 66 primary tumors, and used FISH to investigate the major chromosomal alterations. The differential expression of 225 genes mainly involved in protein biosynthesis, transcriptional machinery and oxidative phosphorylation distinguished the 28 H-MM from the 38 NH-MM cases. The 204 upregulated genes in H-MM mapped mainly to the chromosomes involved in hyperdiploidy, and the29% up-regulated genes in NH-MM mapped to 16q. The identified transcriptional fingerprint was robustly validated on a publicly available gene expression dataset of 64 MM cases; and the global expression modulation of regions on the chromosomes involved in hyperdiploidy was verified using a self-developed non-parametric statistical method. We showed that H-MM could be further divided into two distinct molecular and transcriptional entities, characterized by the presence of trisomy 11 and 1q-extracopies/chromosome 13 deletion, respectively. Our data reinforce the importance of combining molecular cytogenetics and gene expression profiling to define a genomic framework for the study of MM pathogenesis and clinical management.
Upregulation of translational machinery and distinct genetic subgroups characterise hyperdiploidy in multiple myeloma.
Sex
View SamplesA SNP microarray and FISH-based procedure to detect allelic imbalances in multiple myeloma: an integrated genomics approach reveals a wide dosage effect on gene and microRNA expression
A SNP microarray and FISH-based procedure to detect allelic imbalances in multiple myeloma: an integrated genomics approach reveals a wide gene dosage effect.
Specimen part, Disease
View SamplesMultiple myeloma (MM) is characterized by marked genomic instability. Beyond structural rearrangements, a relevant role in its biology is represented by allelic imbalances leading to significant variations in ploidy status. To better elucidate the genomic complexity of MM, we analyzed a panel of 45 patients using combined FISH and microarray approaches. Using a self-developed procedure to infer exact local copy numbers for each sample, we identified a significant fraction of patients showing marked aneuploidy. A conventional clustering analysis showed that aneuploidy, chromosome 1 alterations, hyperdiploidy and recursive deletions at 1p and chromosomes 13, 14 and 22 were the main aberrations driving samples grouping. Then, we integrated mapping information with gene and microRNAs expression profiles: a multiclass analysis of the identified clusters showed a marked gene-dosage effect, particularly concerning 1q transcripts, also confirmed by correlating gene expression levels and local copy number alterations. A wide dosage effect affected also microRNAs, indicating that structural abnormalities in MM closely reflect in their expression imbalances. Finally, we identified several loci in which genes and microRNAs expression correlated with loss-of-heterozygosity occurrence. Our results provide insights into the composite network linking genome structure and gene/microRNA transcriptional features in MM.
A SNP microarray and FISH-based procedure to detect allelic imbalances in multiple myeloma: an integrated genomics approach reveals a wide gene dosage effect.
Specimen part, Disease
View SamplesBackground and objective: The chromosome 13 deletion (del(13)) represents one of the most frequent chromosomal alterations in multiple myeloma (MM). del(13) is associated with an unfavorable prognosis, although there is an increasing agreement that its prognostic relevance has to be related to the ploidy status and the presence of different chromosomal translocations. This study is aimed at providing a comprehensive analysis of the transcriptional features of del(13) in MM. Design and methods: Highly purified plasma cells from 80 newly diagnosed MM patients were characterized by means of FISH and high-density oligonucleotide microarray for gene expression profiling and chromosomal alterations. Results: We identified 67 differentially expressed genes in the del(13)+ and del(13)- groups, all of which downregulated in the del(13)+ cases: 44 mapped along the whole chromosome 13, seven on chromosome 11 and three on chromosome 19. Functional analyses of the selected genes indicated their involvement in protein biosynthesis, ubiquitination and transcriptional regulation. An integrative genomic approach based on regional analyses of the gene expression data identified distinct chromosomal regions whose global expression modulation could differentiate del(13)+, in particular the upregulation of 1q21-1q42 and the downregulation of 19p and almost the entire chromosome 11. FISH analyses confirmed the close relationship between del(13)+ and the presence of extracopies of 1q21-1q42 (P=6x10-4) or the absence of chromosome 11 and 19 trisomy (P=5x10-4). Interpretation and conclusions: Our results indicate that distinct types of chromosomal aberrations are closely related to the transcriptional profiles of del(13)+, suggesting that the contribution of del(13) on the malignancy should be considered together with associated abnormalities.
Integrative genomic analysis reveals distinct transcriptional and genetic features associated with chromosome 13 deletion in multiple myeloma.
Sex
View Samples