Stress is a powerful modulator of neuroendocrine, behavioral, and immunological functions. So far, the molecular mechanisms of response to stressors still remain elusive. In the current study, after 10 days of repeated chronic stress (hot-dry environment and electric foot-shock), a murine model of combinedstress (CS) was created in the SPF Wistar rats. Meanwhile, we established an ulcerative-colitis (UC) rat model induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS)/ethanol enema according to previous studies. The blood, hypothalamus, and colon tissues of these rats from CS, normal control (NC), UC and sham (SH) groups, were collected for further investigations. Comparing to the NC group, the serum levels of T3, T4, fT3 and fT4 were obviously decreased in the CS group after chronic stress, indicating that thyroid dysfunction was induced by long-term combined stress. Moreover, the application of RNAseq and subsequent analyses revealed that neurological disorder and immunosuppression were also caused in the hypothalamus and colon tissues, respectively. Comparing with SH group, besides the induced colon infammation, thyroid dysfuntion and neurological disorder were also produced in the UC group, suggesting that hypothalamic-pituitary-thyroid (HPT) axis and gastrointestinal system might not function in isolation, but rather, have intricate crosstalks. Overall design: Thyroid dysfuntion was induced by combined stress
Thyroid Dysfunction, Neurological Disorder and Immunosuppression as the Consequences of Long-term Combined Stress.
No sample metadata fields
View SamplesSulfate-reducing bacteria (SRB) colonize the guts of ~50% of humans. We used genome-wide transposon mutagenesis and insertion-site sequencing (INSeq), RNA-Seq, plus mass spectrometry to characterize genetic and environmental factors that impact the niche of Desulfovibrio piger, the most common SRB in a surveyed cohort of healthy USA adults. Gnotobiotic mice were colonized with an assemblage of sequenced human gut bacterial species with or without D. piger and fed diets with different levels and types of carbohydrates and sulfur sources. Diet was a major determinant of functions expressed by this artificial 9-member community and of the genes that impact D. piger fitness; the latter includes high- and low-affinity systems for utilizing ammonia, a limiting resource for D. piger in mice consuming a polysaccharide-rich diet. While genes involved in hydrogen consumption and sulfate reduction are necessary for its colonization, varying dietary free sulfate levels did not significantly alter levels of D. piger, which can obtain sulfate from the host in part via cross-feeding mediated by Bacteroides-encoded sulfatases. Chondroitin sulfate, a common dietary supplement, increased D. piger and H2S levels without compromising gut barrier integrity. A chondroitin sulfate-supplemented diet together with D. piger impacted the assemblage’s substrate utilization preferences, allowing consumption of more reduced carbon sources, and increasing the abundance of the H2-producing Actinobacterium, Collinsella aerofaciens. Our findings provide genetic and metabolic details of how this H2-consuming SRB shapes the responses of a microbiota to diet ingredients, and a framework for examining how individuals lacking D. piger differ from those that harbor it. Overall design: 8 samples total, 2 gropus of 4 mice: Proximal colon gene expression profiles of gnotobiotic mice colonized with an artificial gut community composed of 8 human gut species (group 1: NoDp) and from mice colonized with the same community plus D. piger (Dp). Mice were fed a HF/HS diet supplemented with 3% chondroitin sulfate. Animals were sacrificed 2 weeks after colonization
Metabolic niche of a prominent sulfate-reducing human gut bacterium.
Cell line, Subject
View SamplesAnalysis of 104 breast cancer biopsies (removed prior to any treatment with tamoxifen or chemotherapeutic agents) from patients aged between 31 years and 89 years at the time of diagnosis (mean age = 58 years). Twenty were less than 50 years and seventy-seven women were 50 years, or older, at diagnosis. The size of the tumours ranged between 0.6 cm and 8.0 cm (mean = 2.79 cm). Eighteen tumours were T1 (<2 cm) in maximal dimension; 83 were T2 (25 cm) and 3 tumours were T3 (>5 cm). Eighty-two were invasive ductal carcinoma, 17 were invasive lobular and five were tumours of special type (two tubular and three mucinous). Eleven tumours were grade 1; 40 were grade 2; and 53 were grade 3. Sixty-seven tumours were oestrogen receptor (ER) positive and 34 were ER negative (ER status was determined by Enzyme Immuno-Assay (EIA); a positive result was defined as more than 200 fmol/g protein). ER status was not available for 3 patients. Forty-five tumours had no axillary metastases and 59 tumours had metastasised to axillary lymph nodes. Sixty-nine women were treated with post-operative tamoxifen; 26 did not receive tamoxifen. Fifty patients were treated with adjuvant systemic chemotherapy (CMF +/ adriamycin); 45 patients did not receive chemotherapy. Details regarding tamoxifen and systemic chemotherapy were not available for 9 patients. Maximal follow-up was 3,026 days with a mean follow-up of 1,887 days.
Correlating transcriptional networks to breast cancer survival: a large-scale coexpression analysis.
Age, Specimen part, Disease stage
View SamplesTransplantation of amniotic membrane-expanded limbal epithelium (AMLE) in place of donor tissue grafts results in significantly improved outcomes for patients suffering from severe limbal stem cell deficiency; however the reasons for such superior results are unclear. The purpose of this study was to identify transcriptional gene profiles specific to AMLE and donor central corneal epithelium (CE), which may contribute to the divergent clinical outcomes observed following transplant. Limbal fibroblasts which underlie the epithelium and secrete extracellular matrix proteins following injury/surgery were also profiled. Using cell culture, immunofluorescence, microarray gene expression profiling and qRT-PCR validation; this study aims to identify enriched biological processes and pathways which characterise AMLE and CE tissues. We hope the study outcomes will shed light onto the factors which contribute to provide the improved clinical outcomes associated with AMLE transplantation.
Comparative transcriptomic analysis of cultivated limbal epithelium and donor corneal tissue reveals altered wound healing gene expression.
Specimen part
View SamplesIntestinal health is sustained by cooperation between diverse cell types, including epithelial cells, immune cells and stromal cells. Colonic stromal cells provide critical structural support but also regulate mucosal immunity, tolerance and inflammatory responses. Although mucosal stromal cells display substantial variability and plasticity, a paucity of unique genetic markers has precluded the identification of distinct stromal populations and functions. We used single-cell RNA-sequencing to uncover heterogeneity and subtype-specific markers of individual colonic stromal cells in health and ulcerative colitis (UC). Marker-free transcriptional clustering revealed four distinct stromal populations in healthy colon, corresponding to myofibroblasts and three previously unknown distinct subsets of fibroblasts. These fibroblast subsets were substantially remodeled in UC compared to healthy colon: inflamed UC colon was depleted for a healthy fibroblast subpopulation associated with epithelial cell homeostasis, and enriched for a novel disease-associated subtype expressing pro-inflammatory genes. Thus, we have discovered new, molecularly distinct colonic stromal cell subtypes that are altered in human disease. Overall design: Colonic lamina propria mesenchymal cells from 3 healthy donors. 183 single cell libraries, 6 bulk controls, 3 empty well controls. Individual donors processed as separate batches with Fluidigm C1 IFCs and pooled for sequencing (2 x Illumina HiSeq 2500 lanes).
Structural Remodeling of the Human Colonic Mesenchyme in Inflammatory Bowel Disease.
No sample metadata fields
View SamplesIntestinal health is sustained by cooperation between diverse cell types, including epithelial cells, immune cells and stromal cells. Colonic stromal cells provide critical structural support but also regulate mucosal immunity, tolerance and inflammatory responses. Although mucosal stromal cells display substantial variability and plasticity, a paucity of unique genetic markers has precluded the identification of distinct stromal populations and functions. We used single-cell RNA-sequencing to uncover heterogeneity and subtype-specific markers of individual colonic stromal cells in health and ulcerative colitis (UC). Marker-free transcriptional clustering revealed four distinct stromal populations in healthy colon, corresponding to myofibroblasts and three previously unknown distinct subsets of fibroblasts. These fibroblast subsets were substantially remodeled in UC compared to healthy colon: inflamed UC colon was depleted for a healthy fibroblast subpopulation associated with epithelial cell homeostasis, and enriched for a novel disease-associated subtype expressing pro-inflammatory genes. Thus, we have discovered new, molecularly distinct colonic stromal cell subtypes that are altered in human disease. Overall design: Ulcerative colitis colonic lamina propria mesenchymal cells from 3 donors. 178 single cell libraries, 7 bulk controls, 7 empty well controls. Individual donors processed as separate batches on Fluidigm C1 IFCs and pooled for sequencing (1 x Illumina HiSeq 4000 lane).
Structural Remodeling of the Human Colonic Mesenchyme in Inflammatory Bowel Disease.
Disease, Subject
View SamplesIntestinal health is sustained by cooperation between diverse cell types, including epithelial cells, immune cells and stromal cells. Colonic stromal cells provide critical structural support but also regulate mucosal immunity, tolerance and inflammatory responses. Although mucosal stromal cells display substantial variability and plasticity, a paucity of unique genetic markers has precluded the identification of distinct stromal populations and functions. We used single-cell RNA-sequencing to uncover heterogeneity and subtype-specific markers of individual colonic stromal cells in health and ulcerative colitis (UC). Marker-free transcriptional clustering revealed four distinct stromal populations in healthy colon, corresponding to myofibroblasts and three previously unknown distinct subsets of fibroblasts. These fibroblast subsets were substantially remodeled in UC compared to healthy colon: inflamed UC colon was depleted for a healthy fibroblast subpopulation associated with epithelial cell homeostasis, and enriched for a novel disease-associated subtype expressing pro-inflammatory genes. Thus, we have discovered new, molecularly distinct colonic stromal cell subtypes that are altered in human disease. Overall design: Colonic epithelial cells from 3 healthy donors. 92 single cell libraries, 3 bulk controls, 1 empty well control. Individual donors processed as separate batches on Fluidigm C1 IFCs and pooled for sequencing (1 x Illumina HiSeq 2500 lane).
Structural Remodeling of the Human Colonic Mesenchyme in Inflammatory Bowel Disease.
Disease, Subject
View Samples