refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 24 results
Sort by

Filters

Technology

Platform

accession-icon GSE47199
Expression data from blood and biopsies of BKV viremia and nephropathy transplant patients
  • organism-icon Homo sapiens
  • sample-icon 57 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

We study the global gene expression profiles of BKV viremia and nephropathy patients using microarrays in order to better understand the immunologic response to polyomavirus BK (BKV).

Publication Title

Genomics of BK viremia in kidney transplant recipients.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE44131
The clinical and genomic significance of donor-specific antibody (DSA) positive/C4d negative and DSA negative/C4d negative transplant glomerulopathy
  • organism-icon Homo sapiens
  • sample-icon 57 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

We investigated the clinical, histopathologic and genomic features of donor-specific antibody (DSA) +/C4d- and DSA-/C4d- transplant glomerulopathy (TGP) using microarrays. Comparison of the gene expression profiles of DSA-/C4d- TGP biopsies with ptc+g score > 1 to normal and IFTA (Interstitial Fibrosis and Tubular Atrophy) biopsies by microarrays revealed increased expression of quantitative cytotoxic T cell--associated transcripts (QCAT). However, CAMR (chronic antibody-mediated rejection) and DSA+/C4d- TGP had increased expression of QCAT, interferon-gamma and rejection induced, constitutive macrophage-associated, natural killer cell-associated, and DSA selective transcripts. B cell and endothelial cell associated transcripts expression were upregulated only in CAMR biopsies. Our results suggest that while DSA+/C4d- TGP should be classified under CAMR, DSA-/C4d- TGP with ptc+g score > 1 probably develops through a chronic cellular immune response.

Publication Title

The clinical and genomic significance of donor-specific antibody-positive/C4d-negative and donor-specific antibody-negative/C4d-negative transplant glomerulopathy.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE58601
Expression data from biopsies of TGP patients
  • organism-icon Homo sapiens
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

We study the global gene expression profiles of TGP patients with or without graft loss to determine if a clinical and/or gene expression profile can predict allograft survival.

Publication Title

Clinical, Histological, and Molecular Markers Associated With Allograft Loss in Transplant Glomerulopathy Patients.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE50084
Expression data from blood and biopsies of Donor-Specific Antibody positive patients
  • organism-icon Homo sapiens
  • sample-icon 115 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The presence of Donor-Specific anti-HLA Antibodies (DSA) is associated with an increased risk of both acute and chronic antibody-mediated rejection (AMR) in kidney allografts. AMR has remained challenging in kidney transplantation and is the major cause of late allograft loss. However, not all patients with DSA develop AMR, leading to the question of whether this represents accommodation, if other protective mechanisms exist or if this is actually a state of pre-rejection.

Publication Title

A pathogenesis-based transcript signature in donor-specific antibody-positive kidney transplant patients with normal biopsies.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP080947
Silencing SMOC2 protects from kidney fibrosis by inhibiting Fibroblast to Myofibroblast Transformation
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Secreted MOdular Calcium-binding protein-2 (SMOC2) belongs to the SPARC (Secreted Protein Acidic and Rich in Cysteines) family of matricellular proteins whose members are known for their secretion into the extracellular space to modulate cell-cell and cel Overall design: mRNA sequencing of mouse kidney of wildtype and Smoc2 transgenic mice with and without 7 day unilateral uretal obstruction intervention

Publication Title

Silencing SMOC2 ameliorates kidney fibrosis by inhibiting fibroblast to myofibroblast transformation.

Sample Metadata Fields

Treatment, Subject

View Samples
accession-icon SRP111553
Comparison of the expression profile of GFP-positive cells from Tg(-6.8wt1a:EGFP) with the rest of the cells in adult zebrafish cardiac ventricles
  • organism-icon Danio rerio
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

wt1a:GFP labels a population of subepicardial cells in the uninjured ventricle. Here we compare the expression profile of wt1a:GFP-positive cells to the rest of the cells of the ventricle. Overall design: Four paired biological replicates of wt1a:GFP-positive and wt1a:GFP-negative cells obtained from pools of 3-5 zebrafish heart ventricles.

Publication Title

Transient fibrosis resolves via fibroblast inactivation in the regenerating zebrafish heart.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP111552
Comparison of the expression profiles of kdrl:mCherry-positive cells in injured versus uninjured zebrafish cardiac ventricle and analysis of the expression prolife of postnb:citrin-positive cells upon injury compared to the rest of cardiac cells.
  • organism-icon Danio rerio
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

Contrary to mammals, zebrafish regenerate their heart upon cryoinjury of the cardiac ventricular apex. Regeneration is preceed by a fibrotic response. To understand the contribution of different cell sources to zebrafish cardiac fibrosis we performed an RNASeq including endocardial kdrl:mCherry cells from an uninjured heart, and activated endocardial kdrl:mCherry cells, postnb:citrine fibroblasts and the rest of the cells at 7 days post injury. Overall design: Three to six biological replicates consisting of different cell types obtained from the ventricular apex.

Publication Title

Transient fibrosis resolves via fibroblast inactivation in the regenerating zebrafish heart.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP111705
postnb lineage traced cells at 7 and 60 days post cryoinjury (dpi) during adult zebrafish cardiac ventricle regeneration
  • organism-icon Danio rerio
  • sample-icon 14 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

Contrary to mammals, zebrafish regenerate their heart upon cryoinjury of the ventricular apex. Regeneration is preceeded by a transient fibrotic response. Here we compare the expression profile of fibroblast-like cells at 7 different time points of fibrosis resolution. Using a postnb:CreERT2; ubb:loxP-GFP-loxP-mCherrycz1701 double transgenic line, we permanently label cells that expressed postnb at 3 and 4 days post injury (dpi) with mCherry by administration of 4-OHT. We sequenced mCherry-labelled cells obtained from the ventricular apex at 7 and 60 dpi. Overall design: postnb-derived cells were FAC sorted from a pool of three to five biological samples. Four pools were collected at 7 dpi and three at 60 dpi. RNA was extracted from those pools and further processed for transcriptome analysis.

Publication Title

Transient fibrosis resolves via fibroblast inactivation in the regenerating zebrafish heart.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE21710
Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Global energy balance in mammals is controlled by the actions of circulating hormones that coordinate fuel production and utilization in metabolically active tissues. Bone-derived osteocalcin, in its undercarboxylated, hormonal form, regulates fat deposition and is a potent insulin secretagogue. Here, we show that insulin receptor (IR) signaling in osteoblasts controls osteoblast development and osteocalcin expression by suppressing the Runx2 inhibitor Twist-2. Mice lacking IR in osteoblasts have low circulating undercarboxylated osteocalcin and reduced bone acquisition due to decreased bone formation and deficient numbers of osteoblasts. With age, these mice develop marked peripheral adiposity and hyperglycemia accompanied by severe glucose intolerance and insulin resistance. The metabolic abnormalities in these mice are improved by infusion of exogenous under-carboxylated osteocalcin. These results indicate the existence of a bone-pancreas endocrine loop through which insulin signaling in the osteoblast ensures osteoblast differentiation and stimulates osteocalcin production, which in turn regulates insulin sensitivity and pancreatic insulin secretion to control glucose homeostasis.

Publication Title

Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon SRP167244
Transitions in cell potency during early mouse development are driven by Notch
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The Notch signalling pathway plays fundamental roles in diverse developmental processes in metazoans, where it is important in driving cell fate and directing differentiation of various cell types. However, we still have limited knowledge about the role of Notch in early preimplantation stages of mammalian development, or how it interacts with other signalling pathways active at these stages such as Hippo. By using genetic and pharmacological tools in vivo, together with image analysis of single embryos and pluripotent cell culture, we have found that Notch is active from the 4-cell stage. Transcriptomic analysis in single morula identified novel Notch targets, such as early naïve pluripotency markers or transcriptional repressors such as TLE4. Our results reveal a previously undescribed role for Notch in driving transitions during the gradual loss of potency that takes place in the early mouse embryo prior to the first lineage decisions. Overall design: Transcriptomic analysis comparing single Rbpj mutant and control mouse morulae. RNA was isolated from individual E2.5 embryos from two litters. 3 mutant and 3 control embryos were used for analysis.

Publication Title

Transitions in cell potency during early mouse development are driven by Notch.

Sample Metadata Fields

Specimen part, Subject

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact