An iron chelate, ferric nitrilotriacetate (Fe-NTA), induces oxidative renal tubular damage that subsequently leads to renal cell carcinoma in rodents. Here we used gene expression microarrays to find target oncogenes in this model. Network analysis of the gene expression microarray data revealed the involvement of beta-catenin pathway in the induced cancers.
Chronic oxidative stress causes amplification and overexpression of ptprz1 protein tyrosine phosphatase to activate beta-catenin pathway.
No sample metadata fields
View SamplesAge-dependent electrical and morphological remodeling of the Drosophila heart caused by hERG/seizure mutations
Age-dependent electrical and morphological remodeling of the Drosophila heart caused by hERG/seizure mutations.
No sample metadata fields
View SamplesCellular differentiation is regulated through activation and repression of defined transcription factors. A hallmark of differentiation is a pronounced change in cell shape, which is determined by dynamics of the actin cytoskeleton. In de-differentiated fat (DFAT) cells and 3T3-L1 cells, we showed that treatment with the ROCK inhibitor Y-27632, by inducing remodeling of the actin cytoskelton, causes adipocyte differentiation. In addition, we found that depletion of MKL1, an actin binding transcriptional coactivator, elicits adipogenesis.
Regulation of MKL1 via actin cytoskeleton dynamics drives adipocyte differentiation.
Specimen part
View SamplesProliferative diabetic retinopathy (PDR) is a vision-threatening disorder characterized by the formation of cicatricial fibrovascular membranes leading to traction retinal detachment. Despite the recent advance in the treatment of PDR such as vitreoretinal surgery with use of anti-vascular endothelial growth factor (VEGF) drug as an adjunct, it still remains vision-threatening disease.
Microarray analysis of gene expression in fibrovascular membranes excised from patients with proliferative diabetic retinopathy.
Specimen part, Disease, Disease stage
View SamplesSome neuropsychiatric disease, including schizophrenia, may originate during prenatal development, following periods of gestational hypoxia and placental oxidative stress. Here we investigated if gestational hypoxia promotes damaging secretions from the placenta that affect fetal development and whether a mitochondria-targeted antioxidant MitoQ might prevent this. Gestational hypoxia caused low birth-weight and changes in young adult offspring brain, mimicking those in human neuropsychiatric disease. Exposure of cultured neurons to fetal plasma or to secretions from the placenta or from model trophoblast barriers that had been exposed to altered oxygenation caused similar morphological changes. The secretions and plasma contained altered microRNAs whose targets were linked with changes in gene expression in the fetal brain and with human schizophrenia loci. Molecular and morphological changes in vivo and in vitro were prevented by a single dose of MitoQ bound to nanoparticles, which were shown to localise and prevent oxidative stress in the placenta but not in the fetus. We suggest the possibility of developing preventative treatments that target the placenta and not the fetus to reduce risk of psychiatric disease in later life. Overall design: 16 samples (4 biological replicates per group) were analysed using RNA sequencing. The 4 groups were: Normoxia+Saline (control sample), Normoxia+MitoQ-NP, Hypoxia+Saline and Hypoxia+MitoQ-NPs. Pair-wise comparison between all groups was performed.
Treating the placenta to prevent adverse effects of gestational hypoxia on fetal brain development.
No sample metadata fields
View SamplesHeart failure is associated with high morbidity and mortality and its incidence increases worldwide. MicroRNAs (miRNAs) are potential markers and targets for diagnostic and therapeutic applications, respectively. We determined myocardial and circulating miRNA abundance and its changes in patients with stable and end-stage heart failure before and at different time points after mechanical unloading by a left ventricular assist device (LVAD) by small-RNA-sequencing. MiRNA changes in failing heart tissues partially resembled that of fetal myocardium. Consistent with prototypical miRNA–target-mRNA interactions, target mRNA levels were negatively correlated to changes in abundance for highly expressed miRNAs in heart failure and fetal hearts. The circulating small RNA profile was dominated by miRNAs, and fragments of tRNAs and small cytoplasmic RNAs. Heart- and muscle-specific circulating miRNAs (myomirs) increased up to 140-fold in advanced heart failure, which coincided with a similar increase in cardiac troponin I protein, the established marker for heart injury. These extracellular changes nearly completely reversed 3 months following initiation of LVAD support. In stable heart failure, circulating miRNAs showed less than 5-fold differences compared to normal, and myomir and cardiac troponin I levels were only captured near the detection limit. These findings provide the underpinning for miRNA-based therapies and emphasize the usefulness of circulating miRNAs as biomarkers for heart injury performing similar to established diagnostic protein biomarkers. Overall design: Total RNA isolated from human left ventricular myocardium of failing hearts due to dilated or ischemic cardiomyopathy before and after mechanical unloading by a left ventricular assist device, and fetal myocardium compared to non-failing postnatal myocardium was subjected to multiplexed small RNA-sequencing on the Illumina platform. mRNA gene expression data using Illumina HumanHT-12v4 beadarrays for a subset of the myocardial samples is available (GSE52601).
Comparative RNA-sequencing analysis of myocardial and circulating small RNAs in human heart failure and their utility as biomarkers.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
PU.1 is a potent tumor suppressor in classical Hodgkin lymphoma cells.
Cell line, Time
View SamplesPU.1 is an Ets family transcription factor that is essential for the differentiation of both myeloid and lymphoid cells. PU.1 is down-regulated in classical Hodgkin lymphoma cells via methylation of the PU.1 promoter. To evaluate whether down-regulation of PU.1 is essential for the growth of cHL cells, we generated KM-H2 derived cell lines conditionally express PU.1 by tet-off system (designated KM-H2tetPU.1). Conditonally expressed PU.1 by tetracycline removal induced complete growth arrest and apoptosis in KM-H2 cells. To elucidate the mechanisms underlying cell cycle arrest and apoptosis induced by PU.1, we compared gene expression profiles of KM-H2tetPU.1 cells 0, 1 and 3 days after PU.1 induction, by DNA microarray.
PU.1 is a potent tumor suppressor in classical Hodgkin lymphoma cells.
Cell line, Time
View SamplesDiscrimination between self vs. non-self and adequate response to infection and tissue damage are fundamental functions of the immune system. The rapid and global spread of known and emerging viruses is a testament that the timely detection of viral pathogens that reproduce within host cells, presents a formidable challenge to the immune system. To gain access to a proper reproductive niche, many pathogens travel via the host vasculature and therefore become exposed to humoral factors of the innate immune system. Although a cascade of coagulation factors plays a fundamental role in host defense for living fossils such as horseshoe crabs (Xiphosurida spp), the role of the coagulation system in activation of innate responses to pathogens in higher organisms remains unclear. When human type C adenovirus (HAdv) enters the circulation, 240 copies of coagulation factor X (FX) bind to the virus particle with picomolar affinity. Here, using molecular dynamics flexible fitting (MDFF) and high resolution cryo-electron microscopy (cryo-EM), we defined the interface between the HAdv5 hexon protein and FX at pseudo-atomic level. Based on this structural data, we introduced a single amino acid substitution, T424A, in the hexon that completely abrogated FX interaction with the virus. In vivo genome-wide transcriptional profiling revealed that FX-binding-ablated virus failed to activate a distinct network of the early response genes, whose expression depends on transcription factor NFKB1. Deconvolution of the signaling network responsible for early gene activation showed that the FX-HAdv complex triggers MyD88/TRIF/TRAF6 signaling upon activation of toll-like receptor 4 (TLR4) that serves as a principal sensor of FX-virus complex in vivo. Our study implicates host factor decoration of the virus as a mechanism to trigger innate immune sensor that respond to a misplacement of coagulation FX from the blood into intracellular macrophage compartments upon virus entry into the cell. Our results further the mounting evidence of evolutionary conservation between the coagulation system and innate immunity.
Coagulation factor X activates innate immunity to human species C adenovirus.
Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Blood coagulation protein fibrinogen promotes autoimmunity and demyelination via chemokine release and antigen presentation.
Specimen part
View Samples