TAL effectors are special family of type III effectors which can activate host gene expression at transcriptional level. The different induced genes in inoculated wheat leaves of wild type strain vs type III mutant are potential targets of TAL effectors.
Long read and single molecule DNA sequencing simplifies genome assembly and TAL effector gene analysis of Xanthomonas translucens.
Specimen part
View SamplesPurpose: The goals of this study are to determine the effect of microRNA-17 overexpression on 20,803 human genes in RASFs using Ion ProtonTM System platform. Human RASFs from two RA patients were transfected with pre-miR-17 or NC-pre-miR for 48 h and total RNA was prepared using miRNeasy kit (Qiagen). Total RNA integrity was checked using an Agilent Technologies 2100 Bio analyzer (Santa Clara, CA). 10 ng of high quality RNA was used to make cDNA for amplification with the Ion AmpliSeq Transcriptome Human Gene Expression kit (ThermoFisher Scientific). The cDNA was subjected to 12 cycles of amplification with panel primers and barcoded with adapters as recommended. Resulting sequencing libraries were quantified by qPCR using SYBR FAST master mix from KapaBiosystems (Wilmington, MA). Sets of eight libraries were balanced, pooled and sequencing beads produced on an Ion Chef. Sequencing was performed on an Ion P1 semi-conductor sequencing chip using an Ion Proton™ System (ThermoFisher Scientific, Grand Island, NY). Data was collected and primary analysis performed using Torrent Suite software version 5.0.3. Reads were mapped to the panel and expression values determined. R Software version R-3.2.3 was used to generate heatmap. Among the panel of 20,803 genes, the expression of 15,067 genes as shown in the representative heat map was observed in pre-miR-17 and NC-pre-miR transfected RASFs. A total of 664 significantly modulated genes (301 upregulated and 363 downregulated) using Student ‘t’ test were further utilized for the IPA analysis. The result of IPA predicted the protein ubiquitin pathway as a major canonical pathway affected by the differentially regulated genes. Interestingly, IPA analysis generated an interactome that showed connectivity among various ubiquitin ligases, NF-?B family, AP-1/cJun, 20S and 26S proteasome system. Conclusion: Our results clearly shows the major pathways affected by miR-17 overexpression in RASFs were Protein ubiquitination related. Overall design: mRNA profiles of pre-miR-17 and NC-pre-miR transfected RASFs were generated by AmpliSeq, in duplicate, using Ion Proton™ System.
MicroRNA-17 Suppresses TNF-α Signaling by Interfering with TRAF2 and cIAP2 Association in Rheumatoid Arthritis Synovial Fibroblasts.
Specimen part, Subject
View SamplesMrhl is a non coding RNA identified from mouse chromosome 8. It is a 2.4kb poly adenylated, nuclear restricted RNA expressed in multiple tissues. The 2.4 kb RNA also undergoes a nuclear processing event mediated through Drosha that generates an 80nt intermediate RNA. This study was aimed at understanding the functiion of mrhl by silencing the mrhl RNA in the mouse spermatogonial cells using a pool of siRNAs targeted against the mrhl and analyse the global gene expression change using Affymetrix mouse expression array. The mRNAs that showed significant change in expression in mrhl siRNA treated cells against control were studied further for their biological significance with respect to mrhl silencing.
mrhl RNA, a long noncoding RNA, negatively regulates Wnt signaling through its protein partner Ddx5/p68 in mouse spermatogonial cells.
Specimen part, Cell line
View SamplesPromoter-proximal pausing of RNA polymerase II (Pol II) is a widespread transcriptional regulatory step across metazoans. Here we find that the nuclear exon junction complex (pre-EJC) is a critical and conserved regulator of this process. Depletion of pre-EJC subunits leads to a global decrease in Pol II pausing and to premature entry into elongation. This effect occurs, at least in part, via non-canonical recruitment of pre-EJC components at promoters. Failure to recruit the pre-EJC at promoters results in increased binding of the positive transcription elongation complex (P-TEFb) and in enhanced Pol II release. Notably, restoring pausing is sufficient to rescue exon skipping and the photoreceptor differentiation defect associated with depletion of pre-EJC components in vivo. We propose that the pre-EJC serves as an early transcriptional checkpoint to prevent premature entry into elongation, ensuring proper recruitment of RNA processing components that are necessary for exon definition. Overall design: polyA mRNA -seq in conditions with the indicated knockdown treatments
Promoter-proximal pausing mediated by the exon junction complex regulates splicing.
Specimen part, Cell line, Subject
View SamplesWe performed a whole-transcriptome analysis of the peripheral blood of untreated patients with stage 1 PD (HoehnYahr scale).
Involvement of endocytosis and alternative splicing in the formation of the pathological process in the early stages of Parkinson's disease.
Specimen part, Disease
View SamplesThe exon junction complex (EJC) is a highly conserved ribonucleoprotein complex which binds RNAs at a late stage of the splicing reaction and remains associated following export to the cytoplasm. This complex is involved in several cellular post-transcriptional processes including mRNA localization, translation and degradation. The EJC plays an additional role in the splicing of a subset of genes in Drosophila and in human cells but the underlying mechanism remains to be elucidated. Here, we have found a novel function for the EJC and its splicing subunit RnpS1 in preventing transposon accumulation in both Drosophila germline and surrounding follicular cells. This function is mediated specifically through the control of the splicing of the piwi transcript. In absence of RnpS1 one of the piwi intron is retained. This intron contains a weak 5’ splice site as well as degenerate transposon fragments, reminiscent of heterochromatic introns. In addition, we identified a small A/T rich region, which alters its polypyrimidine tract (PPT) and confers the RnpS1’s dependency. Finally, we showed that the removal of this intron by RnpS1 requires the initial splicing of the flanking introns, suggesting a model in which the EJC facilitates the splicing of challenging introns following its initial deposition to adjacent exon junctions. Overall design: In total there are 4 different conditions. Comparisons were made between piwi mutant vs control piwi and rnps1 KD vs controls RnpS1
The exon junction complex controls transposable element activity by ensuring faithful splicing of the piwi transcript.
Specimen part, Subject
View SamplesSystemic hypertension increases cardiac workload and subsequently induces signaling networks in heart that underlie myocyte growth (hypertrophic response) through expansion of sarcomeres with the aim to increase contractility. However, conditions of increased workload can induce both adaptive and maladaptive growth of heart muscle. Previous studies implicate two members of the AP-1 transcription factor family, junD and fra-1, in regulation of heart growth during hypertrophic response. In this study, we investigate the function of the AP-1 transcription factors, c-jun and c-fos, in heart growth. Using pressure overload-induced cardiac hypertrophy in mice and targeted deletion of Jun or Fos in cardiomyocytes, we show that c-jun is required for adaptive cardiac hyphertrophy, while c-fos is dispensable in this context. c-jun promotes expression of sarcomere proteins and suppresses expression of extracellular matrix proteins. Capacity of cardiac muscle to contract depends on organization of principal thick and thin filaments, myosin and actin, within the sarcomere. In line with decreased expression of sarcomere-associated proteins, Jun-deficient cardiomyocytes present disarrangement of filaments in sarcomeres and actin cytoskeleton disorganization. Moreover, Jun-deficient hearts subjected to pressure overload display pronounced fibrosis and increased myocyte apoptosis finally resulting in dilated cardiomyopathy. In conclusion, c-jun but not c-fos is required to induce a transcriptional program aimed at adapting heart growth upon increased workload.
The AP-1 transcription factor c-Jun prevents stress-imposed maladaptive remodeling of the heart.
No sample metadata fields
View SamplesThe 24R,25-dihydroxyvitamin D metabolite (24R,25D) has long been suspected of participating to bone fracture repair. We used Cyp24a1-deficient mice, unable to produce 24R25D, to observe gene expression in callus tissue compared to that of control littermates.
Optimal bone fracture repair requires 24R,25-dihydroxyvitamin D3 and its effector molecule FAM57B2.
Age, Specimen part, Treatment, Time
View SamplesN6-methyladenosine RNA (m6A) is the most abundant internal mRNA modification in mammals. While its role in the regulation of posttranscriptional gene expression is beginning to be unveiled, its function during development of complex organisms is poorly understood. Here, we identify Spenito as a novel member of the methyltransferase complex and show that m6A in Drosophila is necessary for proper synaptic growth, and in regulation of early steps of pre-mRNA splicing. Splicing of Sex-lethal and of its downstream targets are defective in animals lacking m6A, revealing also important roles in sex determination and dosage compensation. Finally, we implicate the nuclear m6A reader protein, YT521-B, as a crucial effector of m6A modifications in vivo. Altogether, our work provides important novel insights into m6A biology through identification and characterization of both m6A-writing and -reading proteins in Drosophila and their effects on splicing, neurogenesis and sex-determination within the context of the whole animal. Overall design: RNA seq in Drosophila melanogaster (flies) (3 Conditions, triplicates)
m<sup>6</sup>A modulates neuronal functions and sex determination in Drosophila.
Sex, Specimen part, Subject
View SamplesTo provide further insight about the effects of prolonged Ezh2 inhibition in glioblastoma using preclinical mouse models and doxycycline-inducible shRNAs that mimic the effects of a selective EZH2 inhibitor. We demonstrate that prolonged Ezh2-depletion causes a robust switch in cell fate, including significantly enhanced proliferation and DNA damage repair and activation of part of the pluripotency network, resulting in altered tumor cell identity and tumor progression. Overall design: SVZ derived neural stem cells (NSCs) were isolated from 7 days old p53;Ink4a/Arf;Krasv12;LucR compound conditional mice and cultured in NSC specific serum-free medium supplemented with 20ng/ml of both EGF and bFGF (R&D systems). NSCs were grown adhesion-free for the first passages to eliminate non-sphere-forming cells. Next, cells were grown adherent on poly-L-Ornithine and Laminin plates and three times infected with lentiviral CMV-Cre. These floxed, tumorigenic cells are further referred as glioma initiating cells (GICs). Next, GICs were infected with a tet-inducible, doxycycline-responsive short hairpin construct (FH1-tUTG-shEzh2). After FACS sorting for GFP, GICs were injected intracranial in NOD-SCID mice and treated with or without doxycycline in the drinking water
Prolonged Ezh2 Depletion in Glioblastoma Causes a Robust Switch in Cell Fate Resulting in Tumor Progression.
No sample metadata fields
View Samples