The role of PDK1 on mammary tumorigenesis and its interaction with PPARdelta, was assessed. Transgenic mice were generated in which PDK1 was expressed in the mammary epithelium.
PPARδ activation acts cooperatively with 3-phosphoinositide-dependent protein kinase-1 to enhance mammary tumorigenesis.
Specimen part, Treatment
View SamplesGene expression from MCF7 breast cancer cells at different times of TNFa incubation:pcs2 and 14-3-3 transduced cells
Inhibition of specific NF-κB activity contributes to the tumor suppressor function of 14-3-3σ in breast cancer.
Time
View SamplesDUSP1 is involved in different cellular pathways including cancer cell proliferation, angiogenesis, invasion and resistance to chemotherapy. To understand more about the cellular responses regulated by DUSP1 in NSCLC cells, we interfered DUSP1 expression in the NSCLC cell line H460 and studied the changes in gene expression differentially regulated by this phosphatase.
DUSP1/MKP1 promotes angiogenesis, invasion and metastasis in non-small-cell lung cancer.
Specimen part, Cell line
View SamplesTriple negative breast cancer is a heterogeneous disease with distinct molecular subtypes that differentially respond to chemotherapy and targeted agents. The purpose of this study was to explore the clinical relevance of Lehmann triple negative breast cancer subtypes by identifying any differences in response to neoadjuvant chemotherapy among them.
Triple negative breast cancer subtypes and pathologic complete response rate to neoadjuvant chemotherapy.
Specimen part, Treatment
View SamplesH69M cells derive from H69 small cell lung cancer cells subjected to prolonged treatment with HGF. Among the whole population of cells, a subset of more fibroblastic cells was isolated (H69M-mesenchymal). In this experiment we compared expression profiles of both cell lines
Targeting epithelial-to-mesenchymal transition with Met inhibitors reverts chemoresistance in small cell lung cancer.
Specimen part, Cell line
View SamplesNF-kB has been linked to doxorubicin-based chemotherapy resistance in breast cancer patients. NF-kB nuclear translocation and DNA binding in doxorubicin treated-breast cancer cells have been extensively examined, however its functional consequences in terms the spectrum of NF-kB -dependent genes expressed and, thus, the impact on tumour cell behaviour are unclear.
Deficiency in p53 is required for doxorubicin induced transcriptional activation of NF-кB target genes in human breast cancer.
Cell line, Treatment
View SamplesBackground: Interval breast cancers can occur through failure to detect an abnormality at the time of screening (missed interval cancer), or as a new event after a negative screen (true interval cancer). The development and progression of true interval tumors (TIBC) is known to be different than screen-detected tumors (SDBC). However, much work still needs to be done to understand the biological characteristics and clinical behaviour of these TIBC. Objectives: To characterize the gene expression profile in TIBC and SDBC aimed to identify biological markers that may be associated with the emergence of symptomatic breast cancer in the screening interval. Material and Methods: An unsupervised exploratory gene expression profile analysis was performed among 10 samples (discovery set, TIBC=5 and SDBC=5) using Affymetrix Human Gene 1.0 ST arrays and interpreted by Ingenuity Pathway Analysis. Differential expression of selected genes was confirmed in validation series of 91 patients (TIBC=12 and SDBC=79) by immunohistochemistry and 24 patients (TIBC=8 and SDBC=16) by RT-qPCR, expanding the analysis to other genes in same pathway (mTOR, 4E-BP1, eIF-4G and S6).
Gene expression profiling in true interval breast cancer reveals overactivation of the mTOR signaling pathway.
Specimen part
View SamplesThe mechanisms that allow breast cancer cells to metabolically sustain growth are poorly understood. In breast cancer, FoxA1 transcription factor, along with estrogen receptor, regulates luminal cell specification and proliferation. Here we report that FoxA transcription factor family members FoxA1 and FoxA2 fuel cellular growth in breast cancer through the expression of a common target gene, namely the endothelial lipase (LIPG)
FoxA and LIPG endothelial lipase control the uptake of extracellular lipids for breast cancer growth.
Cell line
View SamplesArp2/3 complex assembles branched actin filaments key to many cellular processes, but its organismal roles remain poorly understood. Here we employed conditional arpc4 knockout mice to study the function of the Arp2/3 complex in the epidermis.We found that depletion of the Arp2/3 complex by knockout of arpc4 results in skin abnormalities at birth that evolve into a severe psoriasis-like disease hallmarked by hyperactivation of transcription factor Nrf2. Knockout of arpc4 in cultured keratinocytes was sufficient to induce nuclear accumulation of Nrf2, upregulation of Nrf2-target genes and decreased filamentous actin levels. Furthermore, pharmacological inhibition of the Arp2/3 complex unmasked the role of branched actin filaments in Nrf2 regulation. Consistently, we unveiled that Nrf2 associates with the actin cytoskeleton in cells and binds to filamentous actin in vitro Finally, we discovered that Arpc4 is downregulated in both human and mouse psoriatic epidermis. Thus, the Arp2/3 complex affects keratinocytes'' shape and transcriptome through an actin-based cell-autonomous mechanism that influences epidermal morphogenesis and homeostasis. Overall design: Gene expression profile of wt and ARPC4 ko epidermis
Knockout of the Arp2/3 complex in epidermis causes a psoriasis-like disease hallmarked by hyperactivation of transcription factor Nrf2.
Specimen part, Cell line, Subject
View SamplesArp2/3 complex assembles branched actin filaments key to many cellular processes, but its organismal roles remain poorly understood. Here we employed conditional arpc4 knockout mice to study the function of the Arp2/3 complex in the epidermis.We found that depletion of the Arp2/3 complex by knockout of arpc4 results in skin abnormalities at birth that evolve into a severe psoriasis-like disease hallmarked by hyperactivation of transcription factor Nrf2. Knockout of arpc4 in cultured keratinocytes was sufficient to induce nuclear accumulation of Nrf2, upregulation of Nrf2-target genes and decreased filamentous actin levels. Furthermore, pharmacological inhibition of the Arp2/3 complex unmasked the role of branched actin filaments in Nrf2 regulation. Consistently, we unveiled that Nrf2 associates with the actin cytoskeleton in cells and binds to filamentous actin in vitro Finally, we discovered that Arpc4 is downregulated in both human and mouse psoriatic epidermis. Thus, the Arp2/3 complex affects keratinocytes'' shape and transcriptome through an actin-based cell-autonomous mechanism that influences epidermal morphogenesis and homeostasis. Overall design: Gene expression profile of wt, ARPC4 ko and EGFP-Nrf2 expressing keratinocytes.
Knockout of the Arp2/3 complex in epidermis causes a psoriasis-like disease hallmarked by hyperactivation of transcription factor Nrf2.
Specimen part, Cell line, Subject
View Samples