refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 197 results
Sort by

Filters

Technology

Platform

accession-icon GSE37030
Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE34583
Dual actions of Meis1 inhibit erythroid progenitor development and sustain general hematopoietic cell proliferation
  • organism-icon Mus musculus
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Dual actions of Meis1 inhibit erythroid progenitor development and sustain general hematopoietic cell proliferation.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE34541
Identification of gene targets of Meis2
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The homeodomain protein Meis1 is essential for definitive hematopoiesis and vascular patterning in the mouse embryo. Meis2, another member of the same family, shares 82% protein identities with Meis1. Our present study suggested Meis2 exerts two distinguishable effects in differentiating ES cells. First, it increases the numbers of hematopoietic progenitors and extends their persistence in culture. Second, Meis2 skews hematopoietic differentiation by suppressing erythroid while enhancing megakaryocytic progenitor differentiation. To identify the underlying transcriptional bases of these actions, we carried out microarray analysis to compare the various populations of cells developing in ES differentiation cultures in the presence and absence of Meis2 induction.

Publication Title

Dual actions of Meis1 inhibit erythroid progenitor development and sustain general hematopoietic cell proliferation.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE34543
Identification of gene targets of Meis1
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The homeodomain protein Meis1 is essential for definitive hematopoiesis and vascular patterning in the mouse embryo. Our present study suggested it exerts two distinguishable effects in differentiating ES cells. First, it increases the numbers of hematopoietic progenitors and extends their persistence in culture. Second, Meis1 skews hematopoietic differentiation by suppressing erythroid while enhancing megakaryocytic progenitor differentiation. To identify the underlying transcriptional bases of these actions, we carried out microarray analysis to compare the various populations of cells developing in ES differentiation cultures in the presence and absence of Meis1 induction.

Publication Title

Dual actions of Meis1 inhibit erythroid progenitor development and sustain general hematopoietic cell proliferation.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE34537
Mesp1 induces a subset of hematopoietic-associated transcription factors in ES cell-derived Flk1+Tie2+ endothelium
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Previously, we reported that the transcription factor Mesp1 promotes the cell fates of cardiomyocytes, smooth muscle, and vascular endothelium. Recently, hematopoietic stem cells (HSCs) were shown to derive from hemogenic endothelium. Since Mesp1 regulates development of endothelium, it potentially could influence gene expression related to hematopoietic development.

Publication Title

Dual actions of Meis1 inhibit erythroid progenitor development and sustain general hematopoietic cell proliferation.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE86596
Mafb lineage tracing marks macrophages
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Current systems for conditional gene deletion within mouse macrophage lineages are limited by ectopic activity or low efficiency; we generated a Mafb-driven Cre strain to determine whether any dendritic cells (DCs) identified by Zbtb46-GFP expression originate from a Mafb-expressing population

Publication Title

Mafb lineage tracing to distinguish macrophages from other immune lineages reveals dual identity of Langerhans cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE85618
Estrogen receptor-dependent attenuation of hypoxia-induced changes in the lung genome of pulmonary hypertension rats
  • organism-icon Rattus norvegicus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

17-estradiol (E2) exerts complex and context-dependent effects in pulmonary hypertension. In hypoxia-induced pulmonary hypertension (HPH), E2 attenuates lung vascular remodeling through estrogen receptor (ER)-dependent effects; however, ER target genes in the hypoxic lung remain unknown. In order to identify the genome regulated by the E2-ER axis in the hypoxic lung, we performed a microarray analysis in lungs from HPH rats treated with E2 (75 mcg/kg/d) ER-antagonist ICI182,780 (3 mg/kg/d). Untreated HPH rats and normoxic rats served as controls. Using a false discovery rate of 10%, we identified a significantly differentially regulated genome in E2-treated vs. untreated hypoxia rats. Genes most up-regulated by E2 encoded matrix metalloproteinase 8, S100 calcium binding protein A8, and IgA Fc receptor; genes most down-regulated by E2 encoded olfactory receptor 63, secreted frizzled-related protein 2, and thrombospondin 2. Several genes affected by E2 changed in the opposite direction after ICI182,780 co-treatment, indicating an ER-regulated genome in HPH lungs. The bone morphogenetic protein antagonist Grem1 (gremlin 1) was up-regulated by hypoxia, but found to be among the most down-regulated genes after E2 treatment. Gremlin 1 protein was reduced in E2-treated vs. untreated hypoxic animals, and ER-blockade abolished the inhibitory effect of E2 on Grem1 mRNA and protein. In conclusion, E2 ER-dependently regulates several genes involved in proliferative and inflammatory processes during hypoxia. Gremlin 1 is a novel target of the E2-ER axis in HPH. Understanding the mechanisms of E2 gene regulation in HPH may allow for selectively harnessing beneficial transcriptional activities of E2 for therapeutic purposes.

Publication Title

Estrogen receptor-dependent attenuation of hypoxia-induced changes in the lung genome of pulmonary hypertension rats.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE66565
Microarray analysis of committed cDC progenitors
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Analysis of stage-specific gene expression in Zbtb46GFP/+ pre-CD8 DCs, pre-CD4 DCs, CD24 cDCs and CD172a cDCs

Publication Title

Batf3 maintains autoactivation of Irf8 for commitment of a CD8α(+) conventional DC clonogenic progenitor.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE75347
Comparative analysis of Musculus longissimus dorsi expression of Holstein x Charolais F2 cattle (SEGFAM) with high and low intramuscular fat (IMF) content
  • organism-icon Bos taurus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Bovine Genome Array (bovine)

Description

10 + 10 Holstein x Charolais F2 cattle were assigned to 2 groups with high and low IMF content, respectively; Musculus longissimus dorsi mRNA expression was determined by microarray analysis

Publication Title

Gene expression profile of Musculus longissimus dorsi in bulls of a Charolais × Holstein F2-cross with divergent intramuscular fat content.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE75348
Transcriptional response of muscle tissue to a high energy feeding regimen in Japanese Black and Holstein steers
  • organism-icon Bos taurus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Bovine Genome Array (bovine)

Description

Microarray gene expression profiling to identify differentially regulated genes in Musculus longissimus dorsi (MLD) of Japanese Black (JB) steers compared to Holstein steers (HS)

Publication Title

Transcriptome profiling of Musculus longissimus dorsi in two cattle breeds with different intramuscular fat deposition.

Sample Metadata Fields

Sex, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact