Oral squamous cell carcinoma (OSCC) is a prevalent form of cancer that develops from the epithelium of the oral cavity. OSCC is on the rise worldwide, and death rates associated with the disease are particularly high. Despite progress in understanding of the mutational and expression landscape associated with OSCC, advances in deciphering these alterations for the development of therapeutic strategies have been limited. Further insight into the molecular cues that contribute to OSCC is therefore required. Here we show that the transcriptional regulators YAP (YAP1) and TAZ (WWTR1), which are key effectors of the Hippo pathway, drive pro-tumorigenic signals in OSCC. Regions of pre-malignant oral tissues exhibit aberrant nuclear YAP accumulation, suggesting that dysregulated YAP activity contributes to the onset of OSCC. Supporting this premise, we determined that nuclear YAP and TAZ activity drives OSCC cell proliferation, survival, and migration in vitro, and is required for OSCC tumor growth and metastasis in vivo. Global gene expression profiles associated with YAP and TAZ knockdown revealed changes in the control of gene expression implicated in pro-tumorigenic signaling, including those required for cell cycle progression and survival. Notably, the transcriptional signature regulated by YAP and TAZ significantly correlates with gene expression changes occurring in human OSCCs identified by The Cancer Genome Atlas (TCGA), emphasizing a central role for YAP and TAZ in OSCC biology.
A YAP/TAZ-Regulated Molecular Signature Is Associated with Oral Squamous Cell Carcinoma.
Cell line, Treatment
View SamplesThe pattern of gene transcription in Saccharomyces cerevisiae is strongly affected by the presence of glucose. An increased activity of protein kinase A (PKA), triggered by a rise in the intracellular concentration of cAMP, can account for many of the effects of glucose on transcription. To investigate the requirement of PKA for glucose control of gene expression, we have analyzed global transcription in strains devoid of PKA activity. In S. cerevisiae three genes, TPK1, TPK2, TPK3, encode catalytic subunits of PKA and the triple mutant tpk1 tpk2 tpk3 is unviable. We have worked, therefore, with two strains, tpk1 tpk2 tpk3 yak1 and tpk1 tpk2 tpk3 msn2 msn4, that bear suppressor mutations,. We have identified different classes of genes that can be induced, or repressed, by glucose in the absence of PKA. Among these genes, some are also controlled by a redundant signalling pathway involving PKA activation, while others do not respond to an increase in cAMP concentration. On the other hand, among genes which do not respond to glucose in the absence of PKA, some show a full response to increased cAMP levels, even in the absence of glucose, while others appear to require the cooperation of different signalling pathways.
Transcriptional responses to glucose in Saccharomyces cerevisiae strains lacking a functional protein kinase A.
Treatment, Time
View SamplesStandardization of MSC manufacturing is urgently needed to facilitate comparison of clinical trial results. Here, we compare gene expression of MSC generated by the adaptation of a proprietary method for isolation and cultivation of a specific umbilical cord tissue-derived population of Mesenchymal Stromal Cells (MSCs)
Towards an advanced therapy medicinal product based on mesenchymal stromal cells isolated from the umbilical cord tissue: quality and safety data.
No sample metadata fields
View SamplesThe present study aims to explore chemostat-based transcriptome analysis of mixed cultures by investigating interactions between the yeast S. cerevisiae and the lactic acid bacterium Lb. bulgaricus . S. cerevisiae and Lb. bulgaricus are both frequently encountered in kefir, a fermented dairy product (25). In the context of this study, this binary culture serves as a model for the many traditional food and beverage fermentation processes in which yeasts and lactic acid bacteria occur together (19,26-30). The design of the cultivation conditions was based on the observation that Lb. bulgaricus, but not S. cerevisiae, can use lactose as a carbon source for growth and that S. cerevisiae, but not Lb. bulgaricus, can grow on galactose that is released upon hydrolysis of lactose by the bacterial -galactosidase.
Transcriptome-based characterization of interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaricus in lactose-grown chemostat cocultures.
No sample metadata fields
View SamplesStudy of the short term (within the first 330 seconds) transcriptional response of S.cerevisiae upon a sudden addition of glucose.
When transcriptome meets metabolome: fast cellular responses of yeast to sudden relief of glucose limitation.
No sample metadata fields
View SamplesExtremely low specific growth rates (below 0.01 h-1) represent a largely unexplored area of microbial physiology. Retentostats enable controlled, energy-limited cultivation at near-zero specific growth rates while avoiding starvation. In this study, anaerobic, glucose-limited retentostats were used to analyze physiological and genome-wide transcriptional responses of Saccharomyces cerevisiae to cultivation at near-zero specific growth rates. Cultures at near-zero specific growth rates exhibited several characteristics previously associated with quiescence, including accumulation of storage polymers and an increased expression of genes involved in storage metabolism, autophagy and exit from the replicative cell cycle into G0. Analysis of transcriptome data from glucose-limited retentostat and chemostat cultures showed, as specific growth rate was decreased, quiescence-related transcriptional responses already set in at specific growth rates above 0.025 h-1. Many genes involved in mitochondrial processes were specifically upregulated at near-zero specific growth rates, possibly reflecting an increased turn-over of organelles under these conditions. Prolonged (> 2 weeks) cultivation in retentostat cultures led to induction of several genes that were previously implicated in chronological ageing. These observations stress the need for systematic dissection of physiological responses to slow growth, quiescence, ageing and starvation and indicate that controlled cultivation systems such as retentostats can contribute to this goal.
Cellular responses of Saccharomyces cerevisiae at near-zero growth rates: transcriptome analysis of anaerobic retentostat cultures.
No sample metadata fields
View SamplesTranscriptome analysis of hindlimb muscles from dystrophic mice
Comparative transcriptome analysis of muscular dystrophy models Large(myd), Dmd(mdx)/Large(myd) and Dmd(mdx): what makes them different?
Sex, Specimen part
View SamplesFNDC4 is a novel secreted factor sharing high homology with the exercise-associated myokine irisin (FNDC5). Here we report that Fndc4 is robustly upregulated in various mouse models of inflammation as well as in human inflammatory conditions. Specifically, subjects with inflammatory bowel disease show increased FNDC4 levels locally at inflamed sites of the intestine. Interestingly, administration of recombinant FNDC4 during colitis development in mice resulted in markedly reduced disease severity compared to mice injected with a control protein. Conversely, mice that lacked Fndc4 showed increased colitis severity. Analysis of binding of FNDC4 to different immune cell types revealed strong and specific binding to macrophages and monocytes. FNDC4 treatment of bone marrow-derived macrophages in vitro resulted in reduced phagocytosis, improved survival and reduced pro-inflammatory chemokine expression. Hence, treatment with FNDC4 resulted in a state of dampened macrophage activity, while enhancing their survival. Thus, we have characterized a novel factor with direct therapeutic potential in inflammatory bowel disease and possibly other inflammatory diseases.
FNDC4 acts as an anti-inflammatory factor on macrophages and improves colitis in mice.
Sex, Specimen part, Treatment
View SamplesHow the various cell-types of the body achieve their specific shapes is fundamentally unknown. Here, we explore this issue by identifying genes involved in the elaboration of the complex, yet conserved, cellular morphology of Müller glial (MG) cells in the retina. Using genomic based strategies in zebrafish, we found more than 40 candidate genes involved in specific aspects of MG morphogenesis. The successive steps of cell morphogenesis correlate with the timing of the expression of cohorts of inter-related genes that have roles in generating the particular anatomical features of these cells, suggesting that a sequence of genetic regulomes govern stepwise cellular morphogenesis in this system. Overall design: 12 samples with three replicates each are provided. GFAP:GFP positive and negative cells were FAC sorted from wild type animals from each developmental stage
Genetic control of cellular morphogenesis in Müller glia.
Specimen part, Subject
View SamplesValidation of preclinical models of intrahepatic cholangiocarcinoma progression that reliably recapitulate altered molecular features of the human disease would provide an important resource for suggesting and testing of novel target-based therapies against this devastating cancer. In this study, comprehensive gene expression profiling in a novel orthotopic rat model of intrahepatic cholangiocarcinoma progression was carried out in an effort to identify potential therapeutic targets relevant to the progressive human cancer.
Intrahepatic cholangiocarcinoma progression: prognostic factors and basic mechanisms.
Sex, Specimen part
View Samples