refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 28 results
Sort by

Filters

Technology

Platform

accession-icon GSE111327
Chromatin remodeler CHD7 regulates the stem cell identity of human neural progenitors
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Chromatin remodeler CHD7 regulates the stem cell identity of human neural progenitors.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP127035
Analysis of gene expression profile in the control and CHD7-knockdown hiPSC-derived lt-NES cells (scRNA-Seq)
  • organism-icon Homo sapiens
  • sample-icon 92 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

CHARGE syndrome is a congenital disorder caused by mutations in Chromodomain Helicase DNA-binding domain 7 (CHD7) gene. We performed single cell RNA-seq analysis in CTRL and CHD7-knockdown lt-NES cells. Overall design: Single cell RNA-Seq profiling of control (shCTRL) and CHD7-knockdown (sh410 or sh411) cells.

Publication Title

Chromatin remodeler CHD7 regulates the stem cell identity of human neural progenitors.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE89951
CHD7 specifies stem cell identity and neurogenic potential in neural progenitors by regulating SOX21 and BRN2 expression in human central nervous system
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

We performed a microarray experiment to analyze the transcriptional profile of human iPSC-derived neural stem/progenitor cells to identify CHD7 target genes

Publication Title

Chromatin remodeler CHD7 regulates the stem cell identity of human neural progenitors.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE76832
Functional neurons generated from T cell-derived iPSCs for neurological disease modeling
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Functional Neurons Generated from T Cell-Derived Induced Pluripotent Stem Cells for Neurological Disease Modeling.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE76830
Human induced pluripotent stem cells (iPSCs) derived from T-cell compared with that from adult dermal fibroblast (aHDF) [gene expression]
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In this study we determine the transcriptional profile by microarray of iPSCs and iPSC-derived neurospheres generated from T-cells or aHDF by using direct neurosphere method.

Publication Title

Functional Neurons Generated from T Cell-Derived Induced Pluripotent Stem Cells for Neurological Disease Modeling.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE3486
Mechanically stimulated fibroblast from different fetal mouse tissues using Affy MOE430 chip set
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

In order to test the hypothesis that fibroblasts from different tissues are phenotypically distinct from one another, we have subjected tendon, skin and corneal fibroblasts of fetal mouse to mechanical stimulation by fluid flow and analyzed the transcriptional responses of the cells using Affymetrix MOE430 chip set containing two arrays MOE430A and MOE430B.

Publication Title

Phenotypic responses to mechanical stress in fibroblasts from tendon, cornea and skin.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE23101
Comparative Effects of Statins on Murine Cardiac Gene Expression Profiles in Normal Mice
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Recent clinical data suggest that the efficacy of statin treatment in patients with heart failure varies depending on the drugs administered. Therefore, the present study was undertaken to compare murine cardiac gene expression following treatment with four different statins.

Publication Title

Comparative effects of statins on murine cardiac gene expression profiles in normal mice.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE15461
Insufficiency of Copper Ion Homeostasis Causes Freeze-Thaw Injury of Yeast Cells
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Saccharomyces cerevisiae is exposed to freeze-thaw stress in commercial processes including frozen dough baking. The cell viability and fermentation activity after freeze-thaw were dramatically decreased due to freeze-thaw injury. Because freeze-thaw injury involves complex phenomena, the mechanisms of it are not fully understood. We attempted to analyze the mechanisms of freeze-thaw injury by indirect gene expression analysis during post-thaw incubation after freeze-thaw treatment using DNA microarray profiling. The results showed that a high frequency of the genes involved in the homeostasis of metal ions were up-regulated depending on the freezing period. The phenotype of the deletion mutants of the up-regulated genes extracted by indirect gene expression analysis was assessed. The deletion strains of the MAC1 and CTR1 genes involved in copper ion homeostasis exhibited freeze-thaw sensitivity, suggesting that copper ion homeostasis is required for freeze-thaw tolerance. Supplementation with copper ions during post-thaw incubation increased intracellular superoxide dismutase activity. Inverse correlated with intracellular superoxide dismutase activity, intracellular levels of reactive oxygen species were decreased. Moreover, cell viability increased by supplementation with copper ions under specific assessment conditions. This study suggested that insufficiency of copper ion homeostasis may be one of the causes of freeze-thaw injury.

Publication Title

Insufficiency of copper ion homeostasis causes freeze-thaw injury of yeast cells as revealed by indirect gene expression analysis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE33276
Gene expression profiles of S. cerevisiae under heat stress
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Genes whose expression correlated to the degree of thermotolerance in S. cerevisiae were identified by DNA microarray analysis.

Publication Title

Identification of a gene, FMP21, whose expression levels are involved in thermotolerance in Saccharomyces cerevisiae.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon DRP000464
pre-miRNA profiles obtained through application of locked nucleic acids reveals complex 5'/3' arm variation including concomitant cleavage and polyuridylation patterns
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIlluminaGenomeAnalyzerIIx

Description

Recent research hints at an underappreciated complexity in pre-miRNA processing and regulation. Global profiling of pre-miRNA and its potential to increase understanding of the pre-miRNA landscape is impeded by overlap with highly-expressed classes of other non-coding RNA. Here we present a dataset excluding these RNA before sequencing through locked nucleic acids (LNA), greatly increasing pre-miRNA sequence counts with no discernable effects on pre-miRNA or mature miRNA sequencing. Analysis of profiles generated in total, nuclear, and cytoplasmic cell fractions reveals pre-miRNAs are subject to a wide range of regulatory processes involving loci-specific 3'- and 5'-end variation entailing complex cleavage patterns with co-occurring polyuridylation. Additionally, examination of nuclear-enriched flanking sequences of pre-miRNA, particularly those derived from polycistronic miRNA transcripts, provides insight into miRNA and miRNA-offset (moRNA) production. Our findings point to particularly intricate regulation of the let-7 family, introduce novel and unify known forms of pre-miRNA regulation and processing, and shed new light on the byproducts of miRNA processing pathways. none provided

Publication Title

pre-miRNA profiles obtained through application of locked nucleic acids and deep sequencing reveals complex 5'/3' arm variation including concomitant cleavage and polyuridylation patterns.

Sample Metadata Fields

No sample metadata fields

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact