Transcriptome of beta-cells isolated from mice expressing p16ink4a and GFP transgenes and of control ß-cells isolated from mice expressing only the GFP transgene Overall design: RNAseq of murine beta-cells sorted based on GFP expression from three Ins-rtTA/tet-GFP/tet-p16ink4a mice and two control Ins-rtTA/tet-GFP mice following 10 days tet-mediated induction.
p16(Ink4a)-induced senescence of pancreatic beta cells enhances insulin secretion.
Specimen part, Subject
View SamplesBackground & Aims: The recurrence determines the postoperative prognosis of patients with hepatocellular carcinoma (HCC). It is unknown whether de novo HCCs derive from the liver with disability of an organic anion transport. This study was designed to elucidate the link between such transporters and the multicentric occurrence (MO) after radical hepatectomy.
Mitochondrial metabolism in the noncancerous liver determine the occurrence of hepatocellular carcinoma: a prospective study.
Specimen part, Disease, Disease stage, Subject
View SamplesNaturally occurring CD25+CD4+ regulatory T cells (T reg cells) are currently intensively characterized because of their major importance in modulating host responses to tumors and infections, in preventing transplant rejection, and in inhibiting the development of autoimmunity and allergy. Originally, CD4+ T reg cells were identified exclusively by the constitutive expression of CD25, and many in vivo experiments have been performed using depleting antibodies directed against CD25. However, both the existence of CD25 T reg cells, especially within peripheral tissues, as well as the expression of CD25 on activated conventional T cells, which precludes discrimination between T reg cells and activated conventional T cells, limits the interpretation of data obtained by the use of anti-CD25 depleting antibodies. The most specific T reg cell marker currently known is the forkhead box transcription factor Foxp3, which has been shown to be expressed specifically in mouse CD4+ T reg cells and acts as a master switch in the regulation of their development and function. To address the question of the in vivo role of T reg cells in immunopathology, we have generated bacterial artificial chromosome (BAC)transgenic mice termed depletion of regulatory T cell (DEREG) mice, which express a diphtheria toxin receptor (DTR) enhanced GFP (eGFP) fusion protein under the control of the foxp3 locus, allowing both detection and inducible depletion of Foxp3+ T reg cells. The gene expression profile of both CD4+eGFP+FoxP3+ and CD4+eGFPnegFoxP3neg cells isolated from DEREG mice was here analyzed by micro array.
Immunostimulatory RNA blocks suppression by regulatory T cells.
Specimen part
View SamplesIron is an essential component of the erythrocyte protein hemoglobin and is crucial to oxygen transport in vertebrates. In the steady state, erythrocyte production is in equilibrium with erythrocyte removal1. In various pathophysiological conditions, erythrocyte life span is severely compromised, which threatens the organism with anemia and iron toxicity 2,3. Here we identify anon-demand mechanism specific to the liver that clears erythrocytes and recycles iron. We showthat Ly-6Chigh monocytes ingest stressed and senescent erythrocytes, accumulate in the liver, and differentiate to ferroportin 1 (FPN1)-expressing macrophages that can deliver iron to hepatocytes. Monocyte-derived FPN1+ Tim-4neg macrophages are transient, reside alongside embryonically-derived Tim-4high Kuppfer cells, and depend on Csf1 and Nrf2. The spleenlikewise recruits iron-loaded Ly-6Chigh monocytes, but they do not differentiate into ironrecycling macrophages due to the suppressive action of Csf2, and are instead shuttled to the livervia coordinated chemotactic cues. Inhibiting this mechanism by preventing monocyte recruitment to the liver leads to kidney failure and liver damage. These observations identify the liver as the primary organ supporting emergency erythrocyte removal and iron recycling, and uncover a mechanism by which the body adapts to fluctuations in erythrocyte integrity.
On-demand erythrocyte disposal and iron recycling requires transient macrophages in the liver.
Specimen part
View Samples