refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 157 results
Sort by

Filters

Technology

Platform

accession-icon GSE68643
PBX3 cooperates with MEISI in causing rapid acute myeloid leukemia and recapitulates the core transcriptome of MLL-rearranged leukemia
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

To investigate whether co-expression of PBX3/MEIS1 can mimic that of MLL-AF9, HOXA9/MEIS1 or HOXA9/PBX3 in inducing leukemogenesis, we conducted in vivo mouse bone marrow transplantation (BMT) assays. Briefly, normal mouse bone marrow (BM) progenitor (i.e., lineage negative; Lin-) cells collected from B6.SJL (CD45.1) donor mice (CD45.1) were retrovirally co-transduced with MSCVneo-MLL-AF9+MSCV-PIG (MLL-AF9), MSCVneo-HOXA9+MSCV-PIG (HOXA9), MSCVneo-HOXA9+MSCV-PIG-MEIS1 (HOXA9+MEIS1), MSCVneo-HOXA9+MSCV-PIG-PBX3 (HOXA9+PBX3), MSCV-PIG-PBX3+MSCVneo-MEIS1 (PBX3+MEIS1), MSCVneo+MSCV-PIG-PBX3 (PBX3) , MSCVneo+MSCV-PIG-MEIS1 (MEIS1), or MSCVneo+MSCV-PIG (normal control; NC). Retrovirally transduced cells then were cultured with cytokines as well as puromycin and G418. Seven days later, the donor cells were transplanted into lethally irradiated (960 rads) 8- to 10-week-old C57BL/6 (CD45.2) recipient mice. The transplanted mice were watched for leukemogenesis. Then, gene expression profiling was conducted with bone marrow samples collected from leukemia groups and control group.

Publication Title

PBX3 and MEIS1 Cooperate in Hematopoietic Cells to Drive Acute Myeloid Leukemias Characterized by a Core Transcriptome of the MLL-Rearranged Disease.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE65939
Both gain and loss of function of miR-126 promote t(8;21) leukemia progression with different consequences and through different mechanisms
  • organism-icon Mus musculus
  • sample-icon 38 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

To investigate the pathological effect of miR-126 on the progression of acute myeloid leukemia (AML) induced by AML1-ETO9a (AE9a), we conducted a series of mouse bone marrow transplantation (BMT) assays with the following groups: AE9a (primary donor cells were wild-type mouse bone marrow progenitor (i.e., lineage negative; Lin-) cells retrovirally transduced with MSCV-PIG-AE9a), AE9a+miR-126 (primary donor cells were wild-type mouse bone marrow progenitor (i.e., Lin-) cells retrovirally transduced with MSCV-PIG-AE9a-miR-126), and miR-126KO+AE9a (primary donor cells were miR-126 knockout mouse bone marrow progenitor (i.e., Lin-) cells retrovirally transduced with MSCV-PIG-AE9a), along with a control group (primary donor cells were wild-type mouse bone marrow progenitor (i.e., Lin-) cells retrovirally transduced with MSCV-PIG empty vector). The control group was only used in the primary and secondary BMT assays, whereas the three leukemic groups including AE9a, AE9a+miR-126 and miR-126KO+AE9a were used in four passages (i.e., primary, secondary, tertiary and quaternary) of BMT assays. Then, gene expression profiling was conducted with bone marrow samples collected from different groups to decipher the molecular mechanisms underlying miR-126 effects on leukemia initiation and progression and maintenance and self-renewal of leukemia stem/initiating cells.

Publication Title

Overexpression and knockout of miR-126 both promote leukemogenesis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP067910
Sequencing of messenger RNAs with N6-methyladenosine modifications in acute myeloid leukemia (AML) with and without forced expression of FTO
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

To identify potential mRNA targets of FTO whose m6A levels are affected by FTO in acute myeloid leukemia (AML) cells, we conducted m6A-seq for messenger RNAs isolated from AML cells with and without forced expression of FTO. Overall design: We retrovirally transduced MSCV-PIG-FTO (i.e., human FTO) or MSCV-PIG (i.e., CTRL/Control) into human MONOMAC-6/t(9;11) AML cells and then selected individual stable clones under selection of puromuycin (0.5ug/ml). Four stable lines including two each FTO-overexpressing lines (i.e., FTO+ 1 and FTO+ 2; or FTO_1 and FTO_2) and control lines (i.e., WT 1 and WT 2; or Ctrl_1 and Ctrl_2) were selected for genome-wide m6A-sequencing (m6A-Seq) assays. The m6A-seq procedure was performed as detailed in Dominissini's method (Dominissini D., et al. Nat Protocols. 2013; 8: 176-189.). Polyadenylated RNA was extracted using FastTrack MAG Maxi mRNA isolation kit (Life technology). RNA fragmentation Reagents (Ambion) was used to randomly fragment RNA. M6A antibody (Synaptic Systems) was applied for m6A pull down. And final library preparation was constructed by TruSeq Stranded mRNA Sample Prep Kit (Illumina). Final library was quantified by BioAnalyzer High Sensitivity DNA chip then deeply sequenced on the Illumina HiSeq 2500.

Publication Title

FTO Plays an Oncogenic Role in Acute Myeloid Leukemia as a N<sup>6</sup>-Methyladenosine RNA Demethylase.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP080360
mRNA sequencing in acute myeloid leukemia (AML) cells with and without knockdown of FTO
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

To identify the expression of mRNAs after knockdown of FTO, we performed RNA-Seq in MA9.3ITD cells with or without knockdown of FTO. Overall design: We lentivirally transduced pLKO.1-shFTO (i.e., shFTO) or pLKO.1 empty vertor (i.e., shNS) into human MA9.3ITD (human CD34+ hematopoietic stem/progenetor cells stably infected by MLL-AF9 and FLT3-ITD) AML cells and then selected positively infected cells under selection of puromuycin (0.5ug/ml). The knockdown efficiency was confirmed by qPCR and western. Two stable lines including one FTO-knockdown cell line (i.e., shFTO) and one control line (i.e., shNS) were selected for RNA-Seq. Polyadenylated RNA was extracted using FastTrack MAG Maxi mRNA isolation kit (Life technology). RNA fragmentation Reagents (Ambion) was used to randomly fragment RNA. And final library preparation was constructed by TruSeq Stranded mRNA Sample Prep Kit (Illumina). Final library was quantified by BioAnalyzer High Sensitivity DNA chip then deeply sequenced on the Illumina HiSeq 2500.

Publication Title

FTO Plays an Oncogenic Role in Acute Myeloid Leukemia as a N<sup>6</sup>-Methyladenosine RNA Demethylase.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP080113
N6-methyladenosine (m6A) sequencing of messenger RNAs in acute myeloid leukemia (AML) cells with and without knockdown of FTO
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

To identify potential mRNA targets of FTO whose m6A levels are influenced in acute myeloid leukemia (AML) cells, we conducted m6A-seq for mRNA isolated from MA9.3ITD cells with and without knockdown of FTO Overall design: We lentivirally transduced pLKO.1-shFTO (i.e., shFTO) or pLKO.1 empty vertor (i.e., shNS) into human MA9.3ITD (human CD34+ hematopoietic stem/progenetor cells stably infected by MLL-AF9 and FLT3-ITD) AML cells and then selected positively infected cells under selection of puromuycin (0.5ug/ml). Two stable lines including one FTO-knockdown cell line (i.e., shFTO) and one control line (i.e., shNS) were selected for genome-wide m6A-sequencing (m6A-Seq) assays. The m6A-seq procedure was performed as detailed in Dominissini's method (Dominissini D., et al. Nat Protocols. 2013; 8: 176-189.). Polyadenylated RNA was extracted using FastTrack MAG Maxi mRNA isolation kit (Life technology). RNA fragmentation Reagents (Ambion) was used to randomly fragment RNA. M6A antibody (Synaptic Systems) was applied for m6A pull down. And final library preparation was constructed by TruSeq Stranded mRNA Sample Prep Kit (Illumina). Final library was quantified by BioAnalyzer High Sensitivity DNA chip then deeply sequenced on the Illumina HiSeq 2500.

Publication Title

FTO Plays an Oncogenic Role in Acute Myeloid Leukemia as a N<sup>6</sup>-Methyladenosine RNA Demethylase.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE34186
miR-196b targets both oncogenic and tumor suppressor genes in MLL-associated leukemia
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st), Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

miR-196b directly targets both HOXA9/MEIS1 oncogenes and FAS tumour suppressor in MLL-rearranged leukaemia.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE34185
Affymetrix gene arrays of leukemic BM samples from 24 mice including 9 primary
  • organism-icon Mus musculus
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st), Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

To identify such targets of leukemia-related miRNAs such as miR-196b, we conducted Affymetrix gene arrays of leukemic BM samples from 24 mice including 9 primary (including 3 each of negative control, MLL-AF9, and miR-196b+MLL-AF9) and 15 secondary (including 3 negative control, 6 MLL-AF9, and 6 miR-196b+MLL-AF9) recipient mice

Publication Title

miR-196b directly targets both HOXA9/MEIS1 oncogenes and FAS tumour suppressor in MLL-rearranged leukaemia.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP200955
Estrogen-independent molecular actions of mutant estrogen receptor alpha in endometrial cancer [RNA-seq]
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Estrogen receptor alpha (ESR1) mutations have been identified in hormone therapy resistant breast cancer and primary endometrial cancer. Analyses in breast cancer suggests that mutant ESR1 exhibits estrogen independent activity. In endometrial cancer, ESR1 mutations are associated with worse outcomes and less obesity, however experimental investigation of these mutations has not been performed. Using a unique CRISPR/Cas9 strategy, we introduced the D538G mutation, a common endometrial cancer mutation that alters the ligand binding domain of ESR1, while epitope tagging the endogenous locus. We discovered estrogen-independent mutant ESR1 genomic binding that is significantly altered from wildtype ESR1. The D538G mutation impacted expression, including a large set of non-estrogen regulated genes, and chromatin accessibility, with most affected loci bound by mutant ESR1. Mutant ESR1 is unique from constitutive ESR1 activity as mutant-specific changes are not recapitulated with prolonged estrogen exposure. Overall, D538G mutant ESR1 confers estrogen-independent activity while causing additional regulatory changes in endometrial cancer cells that are distinct from breast cancer cells. Overall design: RNA-seq was used to study the effects of the D538G mutation on gene expression

Publication Title

Estrogen-independent molecular actions of mutant estrogen receptor 1 in endometrial cancer.

Sample Metadata Fields

Cell line, Treatment, Subject, Time

View Samples
accession-icon SRP064433
RNA sequencing of e15.5 pancreas from Wild Type, Blinc1-/- and Blinc+/- mice.
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We report the transcriptome changes that result of the genomic deletion of one or two alleles of an islet-specific long non-coding RNA (Blinc1) in isolated pancreas from e15.5 mouse embryos. Overall design: Pancreas from e15.5 embryos were dissected and total RNA extracted. Libraries were prepared from total RNA (RIN>8) with the TruSeq RNA prep kit (Illumina) and sequenced using the HiSeq2000 (Illumina) instrument. More than 20 million reads were mapped to the mouse genome (UCSC/mm9) using Tophat (version 2.0.4) with 4 mismatches and 10 maximum multiple hits. Significantly differentially expressed genes were calculated using DEseq.

Publication Title

βlinc1 encodes a long noncoding RNA that regulates islet β-cell formation and function.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE30257
Identification of a common prognostic gene signature and its association with miR-181 regulation in human acute myeloid leukemia
  • organism-icon Homo sapiens
  • sample-icon 92 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Up-regulation of a HOXA-PBX3 homeobox-gene signature following down-regulation of miR-181 is associated with adverse prognosis in patients with cytogenetically abnormal AML.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact