A goal of this project is to evaluate the integrin mRNA expression in human neural stem/progenitor cells (hNSPC) using high-throughput sequencing technologies. We found high levels of mRNA expression for the ß1, a7, a3, a6, ß5, aV, a5, and a9 integrins. This suggests that hNSPCs may express integrin receptors that can bind fibrinogen and laminin proteins. Overall design: mRNA profiles of hNSPCs from three different passages (12, 15, and 17) were generated by deep sequencing using Illumina HiSeq 2500.
Combination scaffolds of salmon fibrin, hyaluronic acid, and laminin for human neural stem cell and vascular tissue engineering.
No sample metadata fields
View SamplesThe identification of small molecules which either increase the number and/or enhance the activity of CD34+ hematopoietic stem and progenitor cells (HSPCs) during ex-vivo expansion has remained challenging. Applying an unbiased in vivo chemical screen in a transgenic (c-myb:EGFP) zebrafish embryo model, histone deacetylase inhibitors (HDACI) (valproic acid, resminostat and entinostat) were shown to significantly amplify the number of phenotypic hematopoietic precursors. The identified HDACIs were confirmed to significantly enhance also the expansion of human HSPCs during ex vivo treatment. Long-term functionality of ex vivo expanded human HSPCs was verified in a xenotransplantation model using NSG mice. However, the HDACI induced proliferation of HSPCs was associated with short-term functional changes. One of the identified hits, valproic acid (VPA), increased the adhesion capacity of CD34+ cells on primary mesenchymal stromal cells and reduced their chemokine-mediated migration capacity in vitro. In line with the reduced migratory potential in vitro, homing as well as early engraftment of VPA treated human CD34+ cells was significantly impaired in the xenotransplantation model. Our data confirms that HDACI treatment leads to a net expansion of HSPCs cells with long-term engraftment potential across different species. However impaired homing and short-term-engraftment has to be kept in mind when designing clinical transplantation protocols. In addition, our gene expression analysis (RNA-Seq) revealed expression of several genes that were altered in CD34+ cells by VPA treatment including cell adhesion molecules and Notch and wnt genes which has been shown to be involved in preservation of stem cell properties. Overall design: Gene expression analysis of in vitro expanded human HSPCs (CD34+ cells) by valproic acid
Zebrafish In-Vivo Screening for Compounds Amplifying Hematopoietic Stem and Progenitor Cells: - Preclinical Validation in Human CD34+ Stem and Progenitor Cells.
Disease, Subject
View SamplesThe original objectives of the study were to identify surface markers specifically expressed in motor neurons. We now use the data to profile the expression of Cdk family members in motor neurons.
Dual Inhibition of GSK3β and CDK5 Protects the Cytoskeleton of Neurons from Neuroinflammatory-Mediated Degeneration In Vitro and In Vivo.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Comparative analysis of mouse and human placentae across gestation reveals species-specific regulators of placental development.
Specimen part
View SamplesIn this study, we compared the genome-wide transcriptome of mouse and human placentas across gestation to identify species-specific signatures of early development. We also compared human placental signatures to purified primary cytotrophoblasts (CTB) isolated from placentae at different gestational age.
Comparative analysis of mouse and human placentae across gestation reveals species-specific regulators of placental development.
No sample metadata fields
View SamplesIn this study, we compared the genome-wide transcriptome of mouse and human placentas across gestation to identify species-specific signatures of early development. We also compared human placental signatures to purified primary cytotrophoblasts (CTB) isolated from placentae at different gestational age.
Comparative analysis of mouse and human placentae across gestation reveals species-specific regulators of placental development.
No sample metadata fields
View SamplesIn this study we identified that Sirt1 is important for mouse trophoblast stem cell (TSC) differentiation. The transcriptome of wild-type and Sirt1-null TSC were analyzed to identify dysregulation of signaling pathways.
Comparative analysis of mouse and human placentae across gestation reveals species-specific regulators of placental development.
No sample metadata fields
View SamplesMrhl is a non coding RNA identified from mouse chromosome 8. It is a 2.4kb poly adenylated, nuclear restricted RNA expressed in multiple tissues. The 2.4 kb RNA also undergoes a nuclear processing event mediated through Drosha that generates an 80nt intermediate RNA. This study was aimed at understanding the functiion of mrhl by silencing the mrhl RNA in the mouse spermatogonial cells using a pool of siRNAs targeted against the mrhl and analyse the global gene expression change using Affymetrix mouse expression array. The mRNAs that showed significant change in expression in mrhl siRNA treated cells against control were studied further for their biological significance with respect to mrhl silencing.
mrhl RNA, a long noncoding RNA, negatively regulates Wnt signaling through its protein partner Ddx5/p68 in mouse spermatogonial cells.
Specimen part, Cell line
View SamplesTo determine the role of the cytokine activin A in the regulation of human T follicular helper (Tfh) cell gene program, we performed a transcriptomic analysis (RNA-seq) of human naïve CD4 T cells differentiated in vitro with activin A. The analysis of the gene expression profile driven by activin A, alone or in combination with IL-12 (a know regulator of human Tfh differentiation/function), revealed that activin A can regulate the expression of multiple molecules involved in the differentiation and/or function of human Tfh cells. Overall design: Human naïve CD4 T cells were isolated from fresh PBMCs of healthy control subjects by magnetic bead isolation. Purity was measured by FACS as percentage of CD4+CD45RA+ cells and was 95% or higher. Upon isolation, naïve CD4 T cells were stimulated with anti-CD3/CD28 coated beads in the presence of the following cytokine combinations: no exogenous cytokines (beads only), activin A, IL-12, activin A+IL-12, TGFb, TGFb +IL12. Following 5 days of in vitro culture, live CD4 T cells were FACS sorted and gene expression was analyzed by RNA-seq. Data are from independent donors.
Activin A programs the differentiation of human TFH cells.
No sample metadata fields
View SamplesThe Caenorhabditis elegans oxidative stress response transcription factor, SKN-1, is essential for the maintenance of redox homeostasis and is a functional ortholog of the Nrf family of transcription factors. The numerous levels of regulation that govern these transcription factors underscore their importance. Here, we add a thioredoxin, encoded by trx-1, to the expansive list of SKN-1 regulators. We report that loss of trx-1 promotes nuclear localization of intestinal SKN-1 in a redox-independent, cell non-autonomous fashion from the ASJ neurons. Furthermore, this regulation is not general to the thioredoxin family, as two other C. elegans thioredoxins TRX-2 and TRX-3 do not play a role in this process. Moreover, TRX-1-dependent regulation requires signaling from the p38 MAPK signaling pathway. However, while TRX-1 regulates SKN-1 nuclear localization, SKN-1 transcriptional activity remains largely unaffected. Interestingly, RNA-Seq revealed that loss of trx-1 elicits a general, organism-wide down-regulation of several classes of genes; those encoding for collagens and lipid transport and localization being most prevalent. However, one prominent lipase-related gene, lips-6, is highly up regulated upon loss of trx-1 in a skn-1-dependent manner. Together, these results uncover a novel role for a thioredoxin in regulating intestinal SKN-1 nuclear localization in a cell non-autonomous manner, thereby contributing to the understanding of the processes involved in maintaining redox homeostasis throughout an organism. Overall design: Four samples were analyzed: Two nematode strains were analyzed, each under non-stressed and stressed (10mM NaAs) conditions
TRX-1 Regulates SKN-1 Nuclear Localization Cell Non-autonomously in Caenorhabditis elegans.
Disease, Cell line, Subject
View Samples