This SuperSeries is composed of the SubSeries listed below.
Relationship between methylome and transcriptome in patients with nonalcoholic fatty liver disease.
Specimen part, Disease
View SamplesNonalcoholic fatty liver disease represents a spectrum of pathology that ranges from benign steatosis to potentially-progressive steatohepatitis and affects more than 30% of US adults. Advanced NAFLD is associated with increased morbidity and mortality from cirrhosis, primary liver cancer, cardiovascular disease and extrahepatic cancers.
Hepatic gene expression profiles differentiate presymptomatic patients with mild versus severe nonalcoholic fatty liver disease.
Specimen part, Disease
View SamplesPericryptal myofibroblasts in the colon and rectum play an important role in regulating the normal colorectal stem cell niche and facilitating tumour progression. Myofibroblasts have previously mostly been distinguished from normal fibroblasts only by the expression of smooth muscle actin (SMA). We now identify AOC3, a surface monoamine oxidase, as a new marker of myofibroblasts by showing that it is the target protein of the myofibroblast reacting monoclonal antibody (mAb), PR2D3. The normal and tumour tissue distribution and the cell line reactivity of AOC3 match that expected for myofibroblasts. We have shown that the surface expression of AOC3 is sensitive to digestion by trypsin and collagenase and that anti-AOC3 antibodies can be used for FACS sorting of myofibroblasts obtained by non-enzymatic procedures. Whole genome microarray mRNA expression profiles of myofibroblasts and skin fibroblasts revealed four additional genes that are significantly expressed differentially between these two cell types; NKX2-3 and LRRC17 are expressed in myofibroblasts and SHOX2 and TBX5 in skin fibroblasts. Transforming Growth Factor (TGF) substantially down-regulated AOC3 expression in myofibroblasts but not in skin fibroblasts, in which it dramatically increased the expression of SMA. A knockdown of NKX2-3 in myofibroblasts caused a decrease of myofibroblast-related gene expression and an increased expression of the fibroblast associated gene, SHOX2, suggesting that NKX2-3 is a key mediator for maintaining myofibroblast characteristics. Our results show that colorectal myofibroblasts, as defined by the expression of AOC3, NKX2-3 and other markers, are a distinctly different cell type from TGF activated fibroblasts.
Myofibroblasts are distinguished from activated skin fibroblasts by the expression of AOC3 and other associated markers.
Specimen part
View SamplesWe used microarrays to detail the global programme of gene expression underlying cellularisation and identified distinct classes of up-regulated genes during this process.
Bone healing in an aged murine fracture model is characterized by sustained callus inflammation and decreased cell proliferation.
Specimen part
View SamplesFrankincense oil is prepared from aromatic hardened wood resin obtained by tapping Boswellia trees. For thousands of years, it has been important both socially and economically as an ingredient in incense and perfumes. Frankincense oil is a botanical oil distillate made from fermented plants that contains boswellic acid, a component known to have anti-neoplastic properties. We evaluated frankincense oil-induced cytotoxicity in bladder cancer cells. With a window of concentration, frankincense oil suppressed cell viability and induced cytotoxicity in bladder transitional carcinoma J82 cells but not normal bladder urothelial UROtsa cells immortalized with SV40 large T antigen. However, frankincense oil-induced J82 cell death did not result in DNA fragmentation. Microarray and bioinformatics analysis confirmed that frankincense oil activated cell cycle arrest, suppressed cell proliferation, and activated apoptosis in J82 cells through a series of potential pathways. These finding suggest that bladder cancer can be treated through intravesical administration of pharmaceutical agents similar to direct application on melanoma.
Frankincense oil derived from Boswellia carteri induces tumor cell specific cytotoxicity.
No sample metadata fields
View SamplesWe have utilized the RNA-Seq technology to identify genes with distinct expression patterns between failing and non-failing hearts. In an era of next-generation sequencing studies, our study demonstrates how knowledge gained from a small set of samples with accurately measured gene expressions using RNA-Seq can be leveraged as a complementary strategy to discern the genetics of complex disorders.
RNA-Seq identifies novel myocardial gene expression signatures of heart failure.
Sex, Age, Specimen part, Disease
View SamplesMolecular profiling of tumors has proven a valuable tool for identification of prognostic and diagnostic subgroups in medulloblastomas, glioblastomas and other cancers. However, the molecular landscape of atypical teratoid / rhabdoid tumors (AT/RTs) remains largely unexplored. To address this issue, we used microarrays to measure the gene expression profiles of 18 AT/RTs, and performed unsupervised hierarchical clustering to determine molecularly similar subgroups. Four major subgroups (clusters) were identified. These did not conform to gender, tumor location, or presence of monosomy 22. Clusters showed distinct gene signatures and differences in enriched biological processes, including elevated expression of choroid plexus genes in Cluster 4. In addition, survival differed significantly by cluster, with shortest survival (mean 4.7 months) in both Clusters 3 and 4 compared to Clusters 1 and 2 (mean 28.1 months). Analysis showed that multiple bone morphogenetic protein (BMP) pathway genes were up-regulated in the short survival clusters, with BMP4 showing the most significant up-regulation (270-fold). Thus, high expression of BMP pathway genes was negatively associated with survival in this dataset. Our study indicates that molecular subgroups exist within AT/RTs, and that molecular profiling of these comparatively rare tumors may be of diagnostic, prognostic and therapeutic value.
High expression of BMP pathway genes distinguishes a subset of atypical teratoid/rhabdoid tumors associated with shorter survival.
Sex, Specimen part
View SamplesNon-typhoidal Salmonella (NTS) are among of the most important food-borne pathogens. Recently, a highly invasive multi-drug resistant S. Typhimurium of a distinct multilocus sequence type (MLST), ST313, has emerged across sub-Saharan Africa as a major cause of lethal bacteraemia in children and immunosuppressed adults. Encounters between dendritic cells (DCs) and invading bacteria determine the course of infection but whether or how ST313 might usurp DC mediated defence has not been reported. Here we utilised fluorescently labelled invasive and non-invasive strains of Salmonella combined with single-cell RNA sequencing to study the transcriptomes of individual infected and bystander DCs. The transcriptomes displayed a repertoire of cell instrinsic and extrinsic innate response states that differed between invasive and non-invasive strains. Gene expression heterogeneity was increased in DCs challenged with invasive Salmonella. DCs exposed but not harbouring invasive Salmonella exhibited a hyper-activated profile that likely facilitates trafficking of infected cells and dissemination of internalised intact bacteria. In contrast, invasive Salmonella containing DCs demonstrate reprogramming of trafficking genes required to avoid autophagic destruction. Furthermore, these cells displayed differential expression of tolerogenic IL10 and MARCH1 enabling CD83 mediated adaptive immune evasion. Altogether our data illustrate pathogen cell-to cell variability directed by a Salmonella invasive strain highlighting potential mechanisms of host adaption with implications for dissemination in vivo. Overall design: Single-cell RNA sequencing (SMARTSeq2) of 373 human monocyte derived dendritic cells infected with S. Typhimurium strain LT2 or D23580 or left uninfected
Invasive Salmonella exploits divergent immune evasion strategies in infected and bystander dendritic cell subsets.
Subject, Time
View SamplesNon-typhoidal Salmonella (NTS) are among of the most important food-borne pathogens. Recently, a highly invasive multi-drug resistant S. Typhimurium of a distinct multilocus sequence type (MLST), ST313, has emerged across sub-Saharan Africa as a major cause of lethal bacteraemia in children and immunosuppressed adults. Encounters between dendritic cells (DCs) and invading bacteria determine the course of infection but whether or how ST313 might usurp DC mediated defence has not been reported. Here we utilised fluorescently labelled invasive and non-invasive strains of Salmonella combined with single-cell RNA sequencing to study the transcriptomes of individual infected and bystander DCs. The transcriptomes displayed a repertoire of cell instrinsic and extrinsic innate response states that differed between invasive and non-invasive strains. Gene expression heterogeneity was increased in DCs challenged with invasive Salmonella. DCs exposed but not harbouring invasive Salmonella exhibited a hyper-activated profile that likely facilitates trafficking of infected cells and dissemination of internalised intact bacteria. In contrast, invasive Salmonella containing DCs demonstrate reprogramming of trafficking genes required to avoid autophagic destruction. Furthermore, these cells displayed differential expression of tolerogenic IL10 and MARCH1 enabling CD83 mediated adaptive immune evasion. Altogether our data illustrate pathogen cell-to cell variability directed by a Salmonella invasive strain highlighting potential mechanisms of host adaption with implications for dissemination in vivo. Overall design: RNA-seq of mini-bulks (5000 cells) of human monocyte derived dendritic cells infected with S. Typhimurium strain LT2 or D23580 or left uninfected
Invasive Salmonella exploits divergent immune evasion strategies in infected and bystander dendritic cell subsets.
Subject, Time
View SamplesDilated cardiomyopathy (DCM) is the leading cause of heart failure and transplantation worldwide. We used iPSCs to model this disease and compared gene expression change before and after gene therapy of cardiomyocytes derived from DCM-specific iPSCs.
Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy.
Specimen part
View Samples