refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 28 results
Sort by

Filters

Technology

Platform

accession-icon GSE95298
Patient- and Cell Type-Specific Heterogeneity of Metformin Response.
  • organism-icon Homo sapiens
  • sample-icon 55 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Most FDA approved drugs are not equally effective in all patients, suggesting that identification of biomarkers to predict responders to a chemoprevention agent will be needed to stratify patients and achieve maximum benefit. The goal of this study was to investigate both patient specific and cell-context specific heterogeneity of metformin response, using cancer cell lines fibroblast cell lines and induced pluripotent stem cells differentiated into lung epithelial lineages.

Publication Title

Patient- and Cell Type-Specific Heterogeneity of Metformin Response.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE13259
Comparisons of epithelial and mesenchymal murine breast tumor cell lines
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Epithelial tumor cells (E) underwent EMT in vivo in FVB/N mice generating mesenchymal tumors. Mesenchymal cell lines (M1-M4) were each derived from a different mouse. This study compares gene expression between these two different tumor types.

Publication Title

Immune-induced epithelial to mesenchymal transition in vivo generates breast cancer stem cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE46006
The Tight Junction Protein Claudin-2 Controls Mucosal Permeability, Immune Tolerance and Colitis in Mice
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The mucosal epithelium plays a key role in regulating immune homeostasis. Dysregulation of epithelial barrier function is associated with mucosal inflammation. Expression of claudin-2, a pore-forming tight junction protein, is highly upregulated during inflammatory bowel disease (IBD) and, due to its association with epithelial permeability, has been postulated to promote inflammation. Furthermore, claudin-2 also regulates colonic epithelial cell proliferation and intestinal nutrient absorption. However, the precise role of claudin-2 in regulating colonic epithelial and immune homeostasis remains unclear. Here, we demonstrate, using Villin-Claudin-2 transgenic (Cl-2TG) mice, that increased colonic claudin-2 expression unexpectedly protects mice against experimentally induced colitis and colitis-associated cancer. Notably, Cl-2TG mice exhibited increased colon length and permeability as compared with wild type (WT) littermates. However, despite their leaky colon, Cl-2TG mice subjected to experimental colitis were immune compromised, with reduced induction of TLR-2, TLR-4, Myd-88 expression and NF-kB and STAT3 activation. Most importantly, colonic macrophages in Cl-2TG mice exhibited an anergic phenotype. Claudin-2 overexpression also increased colonocyte proliferation and provided protection against colitis-induced colonocyte death. Taken together, our findings have revealed a critical role of claudin-2 in regulating colonic homeostasis, suggesting novel therapeutic strategies for inflammatory conditions of the gastrointestinal tract.

Publication Title

Targeted colonic claudin-2 expression renders resistance to epithelial injury, induces immune suppression, and protects from colitis.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE34874
Expression data from murine colon tissue after exposure to 4% DSS for 6 days DSS followed by 4 days of water or 1% L-arginine
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

L-Arginine (L-Arg) is the substrate for both inducible nitric oxide synthase and arginase, which are upregulated in human IBD and in mouse colitis models. We have found that L-Arg supplementation enhances wound restitution in vitro, and improves the clinical parameters of weight loss, survival, and colon weight/length, in dextran sulfate sodium (DSS) induced murine colitis. Our aim was to further identify the potential mechanisms underlying the clinical benefit of L-Arg supplementation.

Publication Title

L-arginine supplementation improves responses to injury and inflammation in dextran sulfate sodium colitis.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE55616
ARRB1 regulates prostate cancer cell metabolism
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HumanWG-6 v3.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Nuclear ARRB1 induces pseudohypoxia and cellular metabolism reprogramming in prostate cancer.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE55614
Genome-wide Mapping of ARRB1 Reveals its Role as a HIF1A Transcriptional Co-regulator and Regulator of Cellular Metabolism [expression array]
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HumanWG-6 v3.0 expression beadchip

Description

Beta-arrestin 1 (ARRB1) has been implicated in transcriptional regulation as part of protein complexes bound to chromatin. Here we investigate its effect on transcription and its potential impact on prostate cancer. We report the first genome-wide mapping of chromatin binding for ARRB1 and combine it with expression array data to define its transcriptome. We identify Hypoxia Inducible Factor 1A (HIF1A) as a nuclear binding partner that recruits ARRB1 to promoter regions of HIF1A targets. We show that ARRB1 modulates HIF1A-dependent transcription and promotes a shift in cellular metabolism from oxidative phosphorylation to aerobic glycolysis. In addition, we show that ARRB1 plays an important role in neoplastic transformation, cell growth and resistance to hypoxic stress. This is the first example of an endocytic adaptor protein regulating metabolic pathways and implicates ARRB1 as a tumour promoter.

Publication Title

Nuclear ARRB1 induces pseudohypoxia and cellular metabolism reprogramming in prostate cancer.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE8659
Whole genome microarray analysis of C. elegans rrf-3 and eri-1 mutants
  • organism-icon Caenorhabditis elegans
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

RRF-3 and ERI-1 are first identified proteins required for accumulation of at least some endogenous secondary siRNAs in C.elegans. Genome wide gene expression analysis was performed on L4 stage rrf-3 and eri-1 mutant C. elegans to study effects caused by loss of these proteins. Mutant rrf-3 and eri-1 strains exhibited similar expression patterns when compared to N2 wild type, while 72 transcripts were found to be co-overexpressed and 4 transcripts co-underexpressed (> 2-fold, p< 0.05). Ontology analysis indicated many of the gene products were associated with protein phosphorylation and sperm function. These results provide additional support for the hypothesis that RRF-3 and ERI-1 act together in a siRNA pathway and may indicate biological processes that are related to endo-siRNAs.

Publication Title

Whole genome microarray analysis of C. elegans rrf-3 and eri-1 mutants.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP051333
Effect of PDZ domain binding Kinase inhibition using TOPK-32 (called PBKi) on C4-2 cell transcriptome
  • organism-icon Homo sapiens
  • sample-icon 48 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Analysis of C4-2 prostate cancer cell line after 6 hrs of treatment with TOPK-32. PBK is overexpressed in a number of solid tumours, including prostate cancer. Results provide insight into the molecular mechanisms of PBK in prostate carcinogenesis. Overall design: This experiment was designed to understand the regulation of transcriptome by PDZ domain binding kinase, which is an important kinase with role in cell cycle. The cells were treated with a catalytic inhibitor TOPK32 which inhibits the kinase activity of PBK protein.

Publication Title

A reciprocal feedback between the PDZ binding kinase and androgen receptor drives prostate cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP050332
Effect of PBK knockdown on C4-2 cell transcriptome
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Analysis of C4-2 Prostate cancer cell line after 72 hours of knockdown. PBK is overexpressed in a number of solid tumours, including prostate cancer. Results provide insight into the molecular mechanisms of PBK in prostate carcinogenesis. Overall design: This experiment was designed to understand the regulation of transcriptiome by PDZ domain binding kinase (PBK), which is an important kinase with role in cell cycle. In order to achieve this, the endogenous protein was knocked down using siRNA pool that targets the PBK mRNA.

Publication Title

A reciprocal feedback between the PDZ binding kinase and androgen receptor drives prostate cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE19185
Low dose Leptin (25 ng/hr and 12.5 ng/hr) in ob/ob mice
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Ob/ob mice were given 0, 12.5 or 25 ng/hr leptin through an osmotic pump. After 12 days, livers RNA was prepared and illumina microarrays were done. We tested whether leptin can ameliorate diabetes independent of weight loss by defining the lowest dose at which leptin treatment of ob/ob mice reduces plasma [glucose] and [insulin]. We found that a leptin dose of 12.5 ng/hour significantly lowers blood glucose and that 25 ng/hour of leptin normalizes plasma glucose and insulin without significantly reducing body weight, thus establishing that leptin exerts its most potent effects on glucose metabolism. To find possible mediators of this effect, we profiled liver mRNA using microarrays and identified IGF Binding Protein 2 as being regulated by leptin with a similarly high potency. Over-expression of IGFBP2 by an adenovirus reversed diabetes in insulin resistant ob/ob, Ay/a and diet-induced obese mice (DIO), as well as insulin deficient streptozotocin-treated mice. Hyperinsulinemic clamp studies showed a three-fold improvement in hepatic insulin sensitivity following IGFBP2 treatment in ob/ob mice. These results show that IGFBP2 can regulate glucose metabolism, a finding with potential implications for the pathogenesis and treatment of diabetes.

Publication Title

Antidiabetic effects of IGFBP2, a leptin-regulated gene.

Sample Metadata Fields

Specimen part, Time

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact