The goal of this RNA-Seq analysis was to identify genes differentially expressed in a C. elegans strain overexpressing HSP-90 in the neurons compared to control (N2) animals. C. elegans overexpressing HSP-90 protein in the neurons activate transcellular chaperone signalling that enhances organismal proteostasis. This study aimed to identify components of the signalling pathway responsible for this effect. Overall design: Gene expression profile of L4 C. elegans wild type (N2) animals compared to L4 C. elegans overexpressing HSP-90::GFP in the neurons, using a neuron-specific promoter (F25B3.3p), grown at 20C. 3 replicates of each sample.
A PQM-1-Mediated Response Triggers Transcellular Chaperone Signaling and Regulates Organismal Proteostasis.
Cell line, Subject
View SamplesWe set up a pilot study using Affymetrix Gene Chip Porcine Genome Arrays to evaluate the impact of time lags from death on gene expression profiling of porcine skeletal muscle at four post mortem time points (up to 24 hrs) during the routine processing of fresh tights
Microarray gene expression analysis of porcine skeletal muscle sampled at several post mortem time points.
Sex, Specimen part, Time
View SamplesIn addition to lipid second messengers derived from the plasma membrane, increasing evidence supports the existence of nuclear lipid-dependent signaling networks. Diacylglycerol is a key second messenger, generated at the nuclear level, which is metabolized by diacylglycerol kinases (DGKs). It has been demonstrated that nuclear DGK- negatively regulates cell cycle progression. The aim of this study was to identify key determinants of nuclear DGK--dependent cell cycle arrest in C2C12 mouse myoblasts. Using DNA microarrays, Real-Time RT-PCR and western blot, we demonstrated that nuclear DGK- downregulated the expression of cyclin D1 and increased the expression of TIS21/BTG2/PC3, a transcriptional regulator of cyclin D1 with a strong anti-proliferative function. Overexpression of TIS21/BTG2/PC3 blocked the cells in G1 phase of the cell cycle and decreased the levels of Ser807/811 phosphorylated retinoblastoma protein, similarly to overexpression of DGK-. Moreover, during myogenic differentiation of C2C12 cells, we showed an increase of TIS21/BTG2/PC3 expression and a decrease in cyclin D1 levels. siRNA downregulation of TIS21/BTG2/PC3 impaired myogenic differentiation by opposing cell cycle arrest. In summary, these data identify TIS21/BTG2/PC3 and cyclin D1 as downstream effectors of the nuclear DGK- and highlight the importance of this DGK isoform in the regulation of myoblast proliferation and differentiation.
TIS21/BTG2/PC3 and cyclin D1 are key determinants of nuclear diacylglycerol kinase-zeta-dependent cell cycle arrest.
No sample metadata fields
View SamplesThe SWI/SNF-family chromatin remodeling protein ATRX is a tumor suppressor in sarcomas, gliomas and other malignancies. Its loss of function facilitates the alternative lengthening of telomeres (ALT) pathway in tumor cells, while it also affects Polycomb repressive complex 2 (PRC2) silencing of its target genes. To further define the role of inactivating ATRX mutations in carcinogenesis, we knocked out atrx in our previously published p53/nf1-deficient zebrafish line that develops malignant peripheral nerve sheath tumors and gliomas. Complete inactivation of atrx using CRISPR-cas9 was lethal in developing fish and resulted in an alpha-thalassemia-like phenotype including reduced alpha-globin expression. In p53/nf1-deficient zebrafish neither peripheral nerve sheath tumors nor gliomas showed accelerated onset in atrx+/- fish, but these fish developed various tumors that were not observed in their atrx+/+ siblings, including epithelioid sarcoma, angiosarcoma, undifferentiated pleomorphic sarcoma and rare types of carcinoma. Most of these cancer types are included in the AACR Genie database of human tumors associated with mutant ATRX, indicating that our zebrafish model reliably reflects a role for ATRX-loss in the early pathogenesis of these types of human cancers. RNA-seq of p53/nf1- and p53/nf1/atrx-deficient tumors revealed that down-regulation of telomerase accompanied ALT-mediated lengthening of the telomeres in atrx-mutant samples. Moreover, inactivating mutations in atrx disturbed PRC2-target gene silencing, indicating a connection between ATRX loss and PRC2 dysfunction in cancer development. Overall design: Gene expression values were derived from paired end RNA-Seq data that compared zebrafish samples from p53/nf1/atrx-deficient tumors to samples from atrx-wildtype controls (3 vs. 3 samples).
Loss of atrx cooperates with p53-deficiency to promote the development of sarcomas and other malignancies.
Subject
View SamplesBackground & Aims: Chronic hepatitis C virus (HCV) infection is complicated by hepatic fibrosis. Hypothesizing that fibrogenic signals may originate in cells susceptible to HCV infection, gene expression of hepatocytes was analyzed from persons with chronic HCV at different stages of liver fibrosis. Methods: HCV-infected subjects with significant liver fibrosis (Ishak fibrosis 3) were matched for age, race, and gender to subjects with minimal fibrosis (Ishak fibrosis 0-1). RNA from portal tracts and hepatic parenchyma was isolated from biopsies by laser capture and transcriptome profiling was performed using hybridization arrays. Results: Portal tracts from both groups were enriched for immune related genes when compared to hepatocytes but high fibrosis subjects showed a loss of this enrichment. Hepatocytes from persons with high fibrosis were depleted for genes involved in small molecule and drug metabolism, especially butyrylcholinesterase (BCHE), a gene involved in the metabolism of drugs of abuse. Differential expression of BCHE was validated in the same tissues using qPCR. Cross-sectional and longitudinal testing in an expanded cohort of HCV-infected individuals showed that serum BCHE activity decreased in advance of progression to fibrosis. Conclusion: Chronic HCV infection is associated with a loss of hepatocyte metabolic function, decreased enrichment of immune-related genes in portal tracts and downregulation of BCHE in hepatocytes. Our results indicate that BCHE may be involved in the progression of fibrosis during HCV infection among injection drug users and may serve as a useful marker for fibrosis progression.
Laser captured hepatocytes show association of butyrylcholinesterase gene loss and fibrosis progression in hepatitis C-infected drug users.
Sex, Age, Race
View SamplesPediatric Acute Myeloid Leukemia (AML) is an aggressive and poor prognosis malignancy for which there are few effective targeted approaches, despite the numerous genetic alterations, including MLL gene rearrangements (MLL-r). The histone methyltransferase DOT1L is involved in supporting proliferation of MLL-r cells, for which a target inhibitor, Pinometostat, has been evaluated in a clinical trial recruiting pediatric MLL-r leukemic patients. However, modest clinical effects have been reported. Recent studies reported that additional leukemia subtypes lacking MLL-r are sensitive to DOT1L inhibition. Here we report that targeting DOT1L with Pinometostat sensitizes pediatric AML cells to further treatment with the multi-kinase inhibitor Sorafenib, irrespectively of MLL-r. DOT1L pharmacologic inhibition induces AML cell differentiation and modulated expression of genes with relevant roles in cancer development. Such modifications in transcriptional program impact on further treatments, inducing a strong sensitization to Sorafenib, with increased apoptosis and growth suppression of both AML cell lines and primary pediatric AML cells with diverse genotypes. We used microarrays to define differential regulation of gene expression in AML cell lines with or without MLL gene rearrangements following pharmacologic inhibition of DOT1L.
Inhibition of Methyltransferase DOT1L Sensitizes to Sorafenib Treatment AML Cells Irrespective of <i>MLL</i>-Rearrangements: A Novel Therapeutic Strategy for Pediatric AML.
Treatment
View SamplesAt present, medical treatments of synchronous and metachronous liver metastases from colorectal cancer are not differentiated. The aim of the study was to analyze the gene expression profiling of synchronous and metachronous lesions in order to identify molecular signatures as possible basis for choice of systemic therapies. Fresh tissues specimens from metastases of 18 patients undergone liver surgery were collected (10 synchronous and 8 metachronous lesions). Gene expression profiling was studied using Affymetrix platform. Two different profiles were identified. Pathway related to the Epidermal Growth Factor receptor (EGFr) was upregulated in metachronous lesions whereas pathways mainly related to inflammation in synchronous lesions. Real Time-PCR, Western Blotting and ELISA confirmed that the metachronous lesions had the overexpression of EGFr, but the synchronous ones had the overexpression of Cyclo-oxygenase 2 (COX-2). These results suggest that synchronous or metachronous liver metastases from colorectal cancer could be differently treated on the basis of different molecular pathways.
Gene expression profiling of liver metastases from colorectal cancer as potential basis for treatment choice.
Specimen part
View SamplesNOTCH proteins regulate signaling pathways involved in cellular differentiation, proliferation and death. Overactive Notch signaling as been observed in numerous cancers and has been extensively studied in the context of T-cell acute lymphoblastic leukemia (T-ALL) where more than 50% of pateints harbour mutant NOTCH1. Small molecule modulators of these proteins would be important for understanding the role of NOTCH proteins in malignant and normal biological processes.
Direct inhibition of the NOTCH transcription factor complex.
Specimen part, Cell line
View SamplesExpression of a constitutively active Notch-1 intracellular domain (NICD) in MCF-10A cells was found to induce two distinct types of 3D structures: large, hyperproliferative structures and small, growth-arrested structures with reduced cell-to-matrix adhesion. These heterogeneous phenotypes reflect differences in Notch pathway activation levels. High Notch activity caused loss of cell adhesion and inhibition of proliferation, whereas low Notch activity maintained matrix adhesion and provoked a strong hyperproliferative response. In order to gain insight into the dosage-dependent transcriptional events triggered by Notch1 activation, gene expression profiles induced 48 hours after infection of MCF-10A cells with retroviral vectors expressing full-length Notch-1, L1601P+P, or NICD were compared. Full-length Notch-1 induced the weakest effect, L1601P+P induced an intermediate effect and NICD induced the strongest effect. Results provide insight into the dichotomous activites of Notch during development and tumorigenesis.
Dose-dependent induction of distinct phenotypic responses to Notch pathway activation in mammary epithelial cells.
Cell line
View SamplesPlatelets are a rich source of many cytokines and chemokines including transforming growth factor -1 (TGF1). TGF1 is required to convert conventional CD4+ T (Tconv) cells into induced regulatory T (iTreg) cells that express the transcription factor Foxp3. To explore whether other platelet contents will affect the properties of TGF induced Treg cell, we used platelet lysate that contain many other cytokines and chemokines besides TGF1 (pltTGF) to induce Foxp3 expression (pltTGFb-iTreg) from conventional CD4+ T (Tconv) cells. We used purified TGF1 to induce Treg (purTGF-iTreg) cells as a control. Gene expression profiles in iTreg cells were analyzed by microarray asay.
TGF-β1 along with other platelet contents augments Treg cells to suppress anti-FVIII immune responses in hemophilia A mice.
No sample metadata fields
View Samples