Deposition of histone variant H2A.Z by the SWR1 chromatin-remodeling complex is critical for the appropriate expression of many genes in eukaryotes, yet, despite its importance, the composition of the Arabidopsis SWR1 complex has not been thoroughly analyzed. Here we have identified the interacting partners of a conserved Arabidopsis SWR1 subunit, actin-related protein 6 (ARP6). We isolated 9 predicted components, identifying subunits implicated in histone acetylation and interacting partners implicated in chromatin biology. We found that the methyl-CpG-binding domain 9 (MBD9) subunit functioned synergistically with ARP6 to control flowering time. MBD9, in combination with ARP6, was involved in the SWR1-mediated incorporation of the majority of H2A.Z. MBD6 was further required for deposition of H2A.Z at a distinct subset of loci. MBD9 was preferentially bound to nucleosome-depleted regions at the 5' of genes containing high levels of activating histone marks. Our data suggests a model for MBD9 in recruiting the SWR1 complex to open chromatin of actively transcribing genes. Overall design: Total RNA was extracted from 13 DAG shoots grown on 1%MS supplemented with 1% sucrose under long day conditions. Four replicates, grown on separate plates were collected for each genotype. Each replicate conisted of three seedlings. RNA was extracted using Direct-zol RNA Miniprep kit (Zymo). For RNA-Seq, 1ug of total RNA was used to prepare libraries using the TrueSeq Stranded mRNA-Seq kit (Illumina).
Arabidopsis SWR1-associated protein methyl-CpG-binding domain 9 is required for histone H2A.Z deposition.
Subject
View SamplesYoung adult N2 Caenorhabditis elegans were infected with Enterococcus faecalis or Enterococcus faecium for 8 h to determine the transcriptional host response to each enterococcal species.
Both live and dead Enterococci activate Caenorhabditis elegans host defense via immune and stress pathways.
Specimen part, Treatment
View SamplesN2 young adult animals were analyzed four hours after exposure to wild-type Candida albicans DAY185, heat-killed C. albicans DAY185 and heat-killed Escherichia coli OP50, all on Brain Heart Infusion (BHI) agar. It was necessary to use heat-killed E. coli OP50 as a control for these experiments because live E. coli OP50 (the normal nematode food source) is pathogenic to nematodes on BHI agar. These data identify the C. elegans genes that are differentially regulated during nematode infection with a human fungal pathogen.
Candida albicans infection of Caenorhabditis elegans induces antifungal immune defenses.
No sample metadata fields
View SamplesPluripotent-specific inhibitors (PluriSIns) make a powerful tool for studying the mechanisms that control the survival of human pluripotent stem cells (hPSCs). Here we characterize PluriSIn#2 as a novel selective indirect inhibitor of topoisomerase II alpha (TOP2A). We find that TOP2A is uniquely expressed in undifferentiated hPSCs, and that its inhibition results in their rapid cell death. These findings reveal a dependency of hPSCs on the activity of TOP2A, which can be harnessed for their selective elimination from culture.
Brief reports: Controlling the survival of human pluripotent stem cells by small molecule-based targeting of topoisomerase II alpha.
Specimen part, Cell line, Treatment
View SamplesVery little is known about how animals discriminate pathogens from innocuous microbes. To address this question, we examined infection-response gene induction in the nematode Caenorhabditis elegans. We focused on genes that are induced in C. elegans by infection with the bacterial pathogen Pseudomonas aeruginosa, but are not induced by an isogenic attenuated gacA mutant. Most of these genes are induced independently of known immunity pathways. We generated a GFP reporter for one of these genes, infection response gene 1 (irg-1), which is induced strongly by wild-type P. aeruginosa strain PA14, but not by other C. elegans pathogens or by other wild-type P. aeruginosa strains that are weakly pathogenic to C. elegans. To identify components of the pathway that induces irg-1 in response to infection, we performed an RNA interference screen of C. elegans transcription factors. This screen identified zip-2, a bZIP transcription factor that is required for inducing irg-1, as well as several other genes, and is important for defense against infection by P. aeruginosa. These data indicate that zip-2 is part of a specialized pathogen response pathway that is induced by virulent strains of P. aeruginosa and provides defense against this pathogen.
bZIP transcription factor zip-2 mediates an early response to Pseudomonas aeruginosa infection in Caenorhabditis elegans.
Time
View SamplesAnalysis of differential gene expression in C. elegans adults exposed to three different bacteria: E. coli strain OP50, wild-type P. aeruginosa PA14 and gacA mutant PA14. Samples were analyzed at 4 hours and 8 hours after exposure to the different bacteria. These studies identified C. elegans genes induced by pathogen infection.
p38 MAPK regulates expression of immune response genes and contributes to longevity in C. elegans.
Specimen part
View SamplesAnalysis of genes differentially expressed between daf-2(e1368) and daf-2(e1368);pmk-1(km25) and between daf-2(e1368) and daf-2(e1368);daf-16(mgDf47). These studies identified genes upregulated by wild-type PMK-1 and wild-type DAF-16.
p38 MAPK regulates expression of immune response genes and contributes to longevity in C. elegans.
Specimen part
View SamplesYoung adult fer-15;fem-1 Caenorhabditis elegans were infected with Staphylococcus aureus for 8 h to determine the transcriptional host response to Staphylococcus aureus. Analysis of differential gene expression in C. elegans young adults exposed to two different bacteria: E. coli strain OP50 (control), wild-type Staphylococcus aureus RN6390. Samples were analyzed at 8 hours after exposure to the different bacteria. These studies identified C. elegans genes induced by pathogen infection.
Distinct pathogenesis and host responses during infection of C. elegans by P. aeruginosa and S. aureus.
Disease, Disease stage
View SamplesThe nematode Caenorhabditis elegans offers currently untapped potential for carrying out high-throughput, live-animal screens of low molecular weight compound libraries to identify molecules that target a variety of cellular processes. We previously used a bacterial infection assay in C. elegans to identify 119 compounds that affect host-microbe interactions among 37,214 tested. We subsequently found that one of these small molecules, RPW-24, protects C. elegans from bacterial infection by stimulating the host immune response of the nematode. Using transcriptome profiling, epistasis pathway analyses with C. elegans mutants, and an RNAi screen, we showed that RPW-24 promotes resistance to Pseudomonas aeruginosa infection by inducing the transcription of a remarkably small number of C. elegans genes (~1.3% of all genes) in a manner that partially depends on the evolutionarily-conserved p38 MAP kinase pathway and the transcription factor ATF-7. These data demonstrated that the immunostimulatory activity of RPW-24 is required for its efficacy and define a novel C. elegans-based strategy to identify compounds with activity against antibiotic-resistant bacterial pathogens. Here we present the microarray data that were used to define the genes that are differentially regulated in wild-type nematodes following exposure to RPW-24.
Stimulation of host immune defenses by a small molecule protects C. elegans from bacterial infection.
Specimen part, Treatment
View SamplesBackground: The KRAS gene is mutated in about 40% of colorectal cancer (CRC) cases, which has been clinically validated as a predictive mutational marker of intrinsic resistatnce to anti-EGFR inhibitor (EGFRi) therapy. Since nearly 60% of patients with a wild type KRAS fail to respond to EGFRi treatment, there is a need to develop more reliable molecular signatures to better predict response. Here we address the challenge of adapting a gene expression signature predictive of RAS pathway activation, created using fresh frozen (FF) tissues, for use with more widely available formalin fixed paraffin-embedded (FFPE) tissues. Methods: In this study, we evaluated the translation of an 18-gene RAS pathway signature score from FF to FFPE in 54 CRC cases, using a head-to-head comparison of five technology platforms. FFPE-based technologies included the Affymetrix GeneChip (Affy), NanoString nCounter(NanoS), Illumina whole genome RNASeq (RNA-Acc), Illumina targeted RNASeq(t-RNA), and Illumina stranded Total RNA-rRNA-depletion (rRNA). Results: Using Affy_FF as the "gold" standard, initial analysis of the 18-gene RAS scores on all 54 samples shows varying pairwise Spearman correlations, with (1) Affy_FFPE(r=0.233, p=0.090); (2) NanoS_FFPE(r=0.608, p<0.0001); (3) RNA-Acc_FFPE(r=0.175, p=0.21); (4) t-RNA_FFPE (r=-0.237, p=0.085); and (5) t-RNA (r=-0.012, p=0.93). These results suggest that only NanoString has successful FF to FFPE translation. The subsequent removal of identified "problematic" samples (n=15) and gene (n=2) further improves the correlations of Affy_FF with three of the five technologies: Affy_FFPE (r=0.672, p<0.0001); NanoS_FFPE (r=0.738, p<0.0001); and RNA-Acc_FFPE (r=0.483, p=0.002). Conclusions: Of the five technology platforms tested, NanoString technology provides a more faithful translation of the RAS pathway gene expression signature from FF to FFPE than the Affymetrix GeneChip and multiple RNASeq technologies. Moreover, NanoString was the most forgiving technology in the analysis of samples with presumably poor RNA quality. Using this approach, the RAS signature score may now be reasonably applied to FFPE clinical samples. Overall design: Fifty-four (54) FFPE evaluable tumor specimens were selected from a larger multi-center cohort of 468 well-characterized colorectal adenocarcinoma patients whose tissues were obtained between October 2006 and September 2010 at the University of South Florida. The sample cohort was composed of tumor samples that were available as matched fresh-frozen (FF) and formalin-fixed paraffin-embedded (FFPE) pairs.
Adaptation of a RAS pathway activation signature from FF to FFPE tissues in colorectal cancer.
Specimen part, Subject
View Samples