Target specific short single-stranded DNA (ssDNA) molecules, called aptamers, are auspicious ligands for numerous in vivo applications. However, aptamers are synthetic molecules, which might be recognized by the immune cells in vivo and induce an activation of the innate immune system. Thus, immune activation potential of synthetic ssDNA oligonucleotides (ODNs) was determined using a well established closed-loop circulation model. Fresh human blood was incubated at 37C for 2 or 4 hours with ssDNA ODNs (SB_ODN) or CpG ODN as positive control. Transcriptional changes were determined by microarray analyses. Blood samples containing SB_ODN demonstrated after 4 hours a significant regulation of 295 transcripts. Amongst others, CCL8, CXCL10, CCL7 and CXCL11 were highest regulated genes. Gene Ontology terms and KEGG pathway analyses exhibited that the differentially expressed genes belong to the transcripts that are regulated during an immune and inflammatory response, and were overrepresented in TLR signaling pathway. This study shows for the first time the potential of aptamers to activate immune system after systemic application into the human blood. Thus, we highly recommend performing of these preclinical tests with potential aptamer-based therapeutics.
Potential capacity of aptamers to trigger immune activation in human blood.
Sex, Specimen part, Treatment, Subject, Time
View SamplesLipodystrophies resemble syndromes of disturbed adipocyte biology or development and severe congenital forms (CGL) lack adipose tissue. The ubiquitous immediate-early gene c-fos is one essential transcription factor to initiate adipocyte differentiation. In a CGL patient we identified a single homozygous point mutation in the promoter of c-fos gene. The mutation facilitates the formation of a novel specific protein/ DNA complex and ubiquitously reduces basal and inducible c-fos transcription activity.
A mutation in the c-fos gene associated with congenital generalized lipodystrophy.
No sample metadata fields
View Samples