This SuperSeries is composed of the SubSeries listed below.
Predicting Drug Response in Human Prostate Cancer from Preclinical Analysis of In Vivo Mouse Models.
Specimen part, Disease, Disease stage, Treatment
View SamplesAnalysis of the transcriptome of mouse models of prostate cancer after treatment with rapamycin and PD0325901 combination therapy or standard of care docetaxel. The Nkx3.1CreERT2/+; Ptenflox/flox; KrasLSL-G12D/+ (NPK mice) was used in this study. Two months after tumor induction, mice were randomly assigned to vehicle (Veh) or treatments groups, such as rapamycin and PD0325901 (RAPPD) or docetaxel (Docetaxel). For the treatment groups mice were administered rapamycin (10 mg/kg) and PD0325901 (10 mg/kg) or docetaxel (10 mg/kg) for 5 days (SHORT) or for 1 month (LONG). At the end of the treatment, mice were euthanized, tumors harvested and snap frozen for subsequent molecular analysis.
Predicting Drug Response in Human Prostate Cancer from Preclinical Analysis of In Vivo Mouse Models.
Specimen part, Treatment
View SamplesAnalysis of the transcriptome of allografted mouse tumors after treatment with rapamycin and PD0325901. Nkx3.1CreERT2/+; Ptenflox/flox; KrasLSL-G12D/+ (NPK mice) were induced and their tumors removed to generate allograft lines by implanting a 1.5 mm3 tumor fragment in the subcutaneous space of athymic nude mice. Allografted NPK tumors were allowed to grow until they reached a volume of 1 cm3, at which moment they were randomly assigned to either vehicle (Veh) or combination therapy using rapamycin and PD0325901 (RAPPD). Allografted mice were administered rapamycin (10 mg/kg) and PD0325901 (10 mg/kg) during five consecutive days (Allo SHORT). Mice were euthanized in the fifth day 6 hours after having received the last treatment and the tumors were harvested and snap frozen for subsequent molecular analysis.
Predicting Drug Response in Human Prostate Cancer from Preclinical Analysis of In Vivo Mouse Models.
Specimen part, Disease, Disease stage, Treatment
View SamplesAnalysis of the transcriptome of mouse models of prostate cancer to assemble a mouse prostate cancer interactome.
Cross-species regulatory network analysis identifies a synergistic interaction between FOXM1 and CENPF that drives prostate cancer malignancy.
Treatment
View SamplesAnalysis of the transcriptome of mouse models of prostate cancer. NP (Nkx3.1CreERT2/+; Ptenfloxed/floxed) mice develop non-metastatic tumors while NPK (Nkx3.1CreERT2/+; Ptenfloxed/floxed; KrasG12D/+) mice develop metastatic tumors
ETV4 promotes metastasis in response to activation of PI3-kinase and Ras signaling in a mouse model of advanced prostate cancer.
Specimen part, Disease stage
View Samples