This SuperSeries is composed of the SubSeries listed below.
IFN priming is necessary but not sufficient to turn on a migratory dendritic cell program in lupus monocytes.
Specimen part, Disease, Disease stage, Treatment, Subject, Time
View SamplesWe screened SLE monocytes from 19 SLE patients and selected 4 that induced CD4+ T cell proliferation in vitro and 4 that did not. CFSE labeled CD4-T cells (105) were incubated with SLE monocytes (2 x 104). Cells were harvested at 6 hours for RNA extraction.
IFN priming is necessary but not sufficient to turn on a migratory dendritic cell program in lupus monocytes.
Specimen part, Disease, Disease stage, Treatment, Subject, Time
View SamplesTo explore the full extent of IFN-regulated transcriptional changes, we exposed monocytes from two healthy donors to recombinant type I IFN (IFN-2b) in vitro. RNA was extracted at different incubation times (1, 6, 24, 48 and 72 hrs) and the expression data was normalized to that of monocytes cultured with medium.
IFN priming is necessary but not sufficient to turn on a migratory dendritic cell program in lupus monocytes.
Specimen part, Disease, Disease stage, Treatment, Time
View SamplesTo directly compare the SLE monocyte transcriptional program with that of blood mDC precursors, we purified lineage HLA-DRhighCD11chigh mDCs and CD14+ monocytes from the blood of five healthy donors. Their gene expression profiles were then compared to those of blood SLE monocytes. An unsupervised clustering analysis of transcripts present in >20% of the samples classified healthy monocytes, SLE monocytes and healthy mDCs into three well defined groups. A supervised analysis was then performed to find genes: 1) differentially expressed in healthy mDCs compared to monocytes; 2) shared by healthy blood mDCs and SLE blood monocytes.
IFN priming is necessary but not sufficient to turn on a migratory dendritic cell program in lupus monocytes.
Specimen part, Disease, Disease stage, Subject
View SamplesTo better characterize the molecules that could potentially confer antigen presenting capacity to SLE monocytes, we assessed their gene expression profile.
IFN priming is necessary but not sufficient to turn on a migratory dendritic cell program in lupus monocytes.
Specimen part, Disease, Disease stage, Subject
View SamplesMonocytes from 3 healthy donors were cultured for 6 hours in the presence of 20% serum from three newly diagnosed, untreated SLE patients. Microarray analysis was then performed upon normalizing the gene expression levels of samples incubated with SLE sera to those incubated with autologous serum.
IFN priming is necessary but not sufficient to turn on a migratory dendritic cell program in lupus monocytes.
Specimen part, Disease, Disease stage, Treatment
View SamplesTo explore the full extent of IFN-regulated transcriptional changes, we exposed monocytes from two healthy donors to recombinant type I IFN (IFN-2b) in vitro. RNA was extracted at 6 hrs and the expression data was normalized to that of monocytes cultured with medium.
IFN priming is necessary but not sufficient to turn on a migratory dendritic cell program in lupus monocytes.
Specimen part, Disease, Disease stage, Treatment
View SamplesA better understanding of the molecular and cellular factors involved in human plasma cell differentiation will accelerate therapeutic target identification in autoantibody-mediated diseases such as Systemic Lupus Erythematosus (SLE). Here, we describe a novel CXCR3+ PD1hi CD4+ T cell 'helper' population expanded in blood and inflamed kidneys of SLE patients. Upon activation, these cells express IFNg and IL10 and display high levels of mitochondrial ROS (mtROS) as the result of reverse electron transfer (RET) fueled by succinate. Furthermore, T cell-derived succinate synergizes with IL10 to provide B cell help. Cells with similar phenotype and function are generated in vitro upon priming naive CD4+ T cells with oxidized mitochondrial DNA (Ox mtDNA)- activated plasmacytoid dendritic cells (pDCs) in a PD1-dependent manner. Our results provide a novel mechanism for the initiation and/or perpetuation of extrafollicular humoral responses in SLE. Overall design: 2 independent datasets; dataset1: total 9 samples (3 subjects, 3 groups, 3 replicates); dataset2: total 20 samples, 2 samples(PD1POS, Tfh) from each of 10 SLE patients
A CD4<sup>+</sup> T cell population expanded in lupus blood provides B cell help through interleukin-10 and succinate.
Specimen part, Disease, Treatment, Subject
View SamplesA better understanding of the mechanisms involved in human plasma cell differentiation will accelerate therapeutic target identification in autoantibody-mediated diseases such as Systemic Lupus Erythematosus (SLE). Here, we describe a novel CXCR5- CXCR3+ PD1hi CD4+ T cell 'helper' population distinct from follicular helper T cells (Tfh) and expanded in blood and inflamed kidneys of SLE patients. Upon activation, these cells express IFN??and high levels of IL10. Additionally, they accumulate high amounts of mitochondrial ROS (mtROS) as the result of reverse electron transport (RET) fueled by succinate. These cells provide potent help to B cells through the synergistic effect of IL10 and succinate. Cells with similar phenotype and function are generated in vitro upon priming naïve CD4+ T cells with oxidized mitochondrial DNA (Ox mtDNA)-activated plasmacytoid dendritic cells (pDCs) in a PD1-dependent manner. Our results provide a novel mechanism for the initiation and/or perpetuation of extrafollicular humoral responses in SLE. Overall design: 9 total samples; 3 groups of 3 biological replicates: control group Th0, co-culture group CpGA-pDC, and co-culture group Ox mtDNA-pDC
A CD4<sup>+</sup> T cell population expanded in lupus blood provides B cell help through interleukin-10 and succinate.
Specimen part, Subject
View SamplesOral squamous cell carcinoma (OSCC) is a prevalent form of cancer that develops from the epithelium of the oral cavity. OSCC is on the rise worldwide, and death rates associated with the disease are particularly high. Despite progress in understanding of the mutational and expression landscape associated with OSCC, advances in deciphering these alterations for the development of therapeutic strategies have been limited. Further insight into the molecular cues that contribute to OSCC is therefore required. Here we show that the transcriptional regulators YAP (YAP1) and TAZ (WWTR1), which are key effectors of the Hippo pathway, drive pro-tumorigenic signals in OSCC. Regions of pre-malignant oral tissues exhibit aberrant nuclear YAP accumulation, suggesting that dysregulated YAP activity contributes to the onset of OSCC. Supporting this premise, we determined that nuclear YAP and TAZ activity drives OSCC cell proliferation, survival, and migration in vitro, and is required for OSCC tumor growth and metastasis in vivo. Global gene expression profiles associated with YAP and TAZ knockdown revealed changes in the control of gene expression implicated in pro-tumorigenic signaling, including those required for cell cycle progression and survival. Notably, the transcriptional signature regulated by YAP and TAZ significantly correlates with gene expression changes occurring in human OSCCs identified by The Cancer Genome Atlas (TCGA), emphasizing a central role for YAP and TAZ in OSCC biology.
A YAP/TAZ-Regulated Molecular Signature Is Associated with Oral Squamous Cell Carcinoma.
Cell line, Treatment
View Samples