Distinct shaping of the upper versus lower facial skeleton is essential for function of the vertebrate jaw and middle ear, yet the cellular mechanisms by which this occurs have remained unclear. Here, we show that Endothelin1 (Edn1) signaling accelerates mesenchymal condensation and subsequent cartilage formation in the lower face through antagonism of Jagged-Notch signaling and Prrx1 transcription factors. A genomic analysis of facial skeletal precursors in mutants and overexpression embryos reveals that Jagged-Notch signaling represses genes that are strongly induced as pharyngeal arch neural crest-derived cells begin skeletal differentiation. In wild types, initial Jagged-Notch repression dorsally ensures that barx1+ condensations and cartilage differentiation occur first in ventral-intermediate zones of the pharyngeal arches. Reduced Jagged-Notch signaling results in an expansion of pre-cartilage condensations in the upper face, with loss of barx1 partially restoring dorsal cartilage shapes in jag1b mutants. Further, by studying new mutants for zebrafish prrx1a and prrx1b, we find that Prrx1 genes function in parallel to Jagged-Notch signaling to restrict the formation of dorsal barx1+ pre-cartilage condensations. Consistently, combined losses of jag1b and prrx1a/b robustly rescue ventral barx1+ condensations and lower facial cartilage development in edn1 mutants. Together, our work suggests that Edn1 works through parallel inhibition of Jagged-Notch and Prrx1 pathways to promote an earlier and more extensive establishment of cartilage condensations in the lower face. Overall design: We performed RNAseq on FACS-sorted neural crest-derived pharyngeal arch cells (fli1a:GFP; sox10:DsRed double positive) from wild-type embryos at 3 different stages (20, 28, and 36 hours post fertilization) and embryos with altered levels of Edn1 and Notch signaling (edn1 mutants and hsp70I:Gal4; UAS:Edn1 transgenics; jag1b mutants, dibenzazepine-treated embryos, and hsp70I:Gal4; UAS:NICD transgenics. We also sequenced RNA from heat-shocked UAS:Edn1+ and hsp70I:Gal4+ transgenics and jag1b+/+ controls.
Competition between Jagged-Notch and Endothelin1 Signaling Selectively Restricts Cartilage Formation in the Zebrafish Upper Face.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Identification of biomarker genes for resistance to a pathogen by a novel method for meta-analysis of single-channel microarray datasets.
Specimen part
View SamplesFusarium head blight (FHB) is a major disease of cereal crops caused by the fungus Fusarium graminearum (Fg). FHB affects the flowering heads (or spikes). This study compare the gene expression profile in wheat spikelets from near isogenic spring wheat lines carrying or not the FHB resistance QTL 2DL, after inoculation with water (H2O) or Fg; two inoculation methods were also compared, point and spray inoculation.
Identification of biomarker genes for resistance to a pathogen by a novel method for meta-analysis of single-channel microarray datasets.
Specimen part
View SamplesFusarium head blight (FHB) is a major disease of cereal crops caused by the fungus Fusarium graminearum (Fg). FHB affects the flowering heads (or spikes). This study compare the gene expression profile in wheat spikelets from near isogenic spring wheat lines carrying different combinaison of the FHB resistance QTLs 2DL, 3BS and 5A, after inoculation with water (H2O) or Fg; the point inoculation method was used.
Identification of biomarker genes for resistance to a pathogen by a novel method for meta-analysis of single-channel microarray datasets.
Specimen part
View SamplesFusarium head blight (FHB) is a major disease of cereal crops caused by the fungus Fusarium graminearum (Fg). FHB affects the flowering heads (or spikes). This study compare the gene expression profile in wheat spikelets from the very susceptible spring wheat cultivar Roblin inoculated with either water (H2O), a Fg strain (GZ3639) producing the mycotoxin deoxynivalenol (+DON), or a GZ3639-derived Fg strain which has been inactivated at the Tri5 locus (-DON).
Identification of biomarker genes for resistance to a pathogen by a novel method for meta-analysis of single-channel microarray datasets.
Specimen part
View SamplesFusarium head blight (FHB) is a major disease of cereal crops caused by the fungus Fusarium graminearum (Fg). FHB affects the flowering heads (or spikes). This study compare the gene expression profile in wheat spikelets from the very susceptible spring wheat cultivar Roblin inoculated with water (H2O) or Fg.
Identification of biomarker genes for resistance to a pathogen by a novel method for meta-analysis of single-channel microarray datasets.
Specimen part
View SamplesFusarium head blight (FHB) is a major disease of cereal crops caused by the fungus Fusarium graminearum (Fg). FHB affects the flowering heads (or spikes). This study compare the gene expression profile in wheat spikelets from the resistant spring wheat cultivar NuyBay inoculated with water (H2O) or Fg.
Identification of biomarker genes for resistance to a pathogen by a novel method for meta-analysis of single-channel microarray datasets.
Specimen part
View SamplesFusarium head blight (FHB) is a major disease of cereal crops caused by the fungus Fusarium graminearum (Fg). FHB affects the flowering heads (or spikes). This study compare the gene expression profile in wheat spikelets from the resistant winter wheat cultivar Dream inoculated with water (H2O) or Fg.
Identification of biomarker genes for resistance to a pathogen by a novel method for meta-analysis of single-channel microarray datasets.
Specimen part
View SamplesFusarium head blight (FHB) is a major disease of cereal crops caused by the fungus Fusarium graminearum (Fg). FHB affects the flowering heads (or spikes). This study compare the gene expression profile in wheat spikelets from the resistant spring wheat cultivar Wuhan1 inoculated with water (H2O) or Fg.
Identification of biomarker genes for resistance to a pathogen by a novel method for meta-analysis of single-channel microarray datasets.
Specimen part
View SamplesThe adaptor protein Lnk is an important negative regulator of HSC homeostasis and self-renewal. This study aims to investigate the role of Lnk in HSC aging. Here we performed expression profiling of bone marrow CD150+CD48-LSK LT-HSCs from young and old WT and Lnk-/- mice. Results identify select Lnk-mediated pathways with potential involvement in HSC self-renewal and aging.
Lnk deficiency partially mitigates hematopoietic stem cell aging.
Specimen part
View Samples