refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1395 results
Sort by

Filters

Technology

Platform

accession-icon GSE60557
In vitro expansion of human gastric epithelial stem cells and their primary response to bacterial infection
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

We previously established long-term 3D organoid culture systems for several murine tissues (intestine, stomach, pancreas and liver) as well as human intestine and pancreas. Here, we describe culture conditions to generate long-term 3D culture from human gastric stem cells. The technology can be applied to study the epithelial response to infection with Helicobacter pylori. Human gastric cultures can expand indefinitely in 3D Matrigel. Cultures can be generated from normal tissue, from single sorted stem cells, or from tumor tissue. Organoids maintain many characteristics of the respective tissue in terms of histology, marker expression and euploidy. Organoids from normal tissue express markers of four lineages of the stomach and self-organize in gland and pit-domains. They can be directed to specifically express either lineages of the gastric gland, or the gastric pit by addition of Nicotinamide and withdrawal of Wnt. While gastric pit lineages react marginally to bacterial infection, gastric gland lineages mount a strong inflammatory response. The gastric culture system provides a unique tool to study gastric pathologies.

Publication Title

In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
accession-icon GSE136083
Comparison of mammalian reovirus infection from the apical or basolateral membrane of polarized T84 cells
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

In this study we used Illumina Microarray to compare the induction of immune related genes following enteric virus infection. Results show that infection of T3D mammalian reovirus from the basolateral side lead to a higher induction of all genes compared to apical infection.

Publication Title

Asymmetric distribution of TLR3 leads to a polarized immune response in human intestinal epithelial cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE44060
Expression profiling of Troy positive gastric cells
  • organism-icon Mus musculus
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

Proliferation of the self-renewing epithelium of the gastric corpus occurs almost exclusively in the isthmus of the glands, from where cells migrate bi-directionally towards pit and base. The isthmus is therefore generally viewed as the stem cell zone. We find that the stem cell marker Troy is expressed at the gland base by a small subpopulation of chief cells. By lineage tracing using a Troy-eGFP-ires-CreERT2 allele, single marked cells are shown to generate entirely labeled gastric units over periods of months. This phenomenon accelerates upon tissue damage. Troy+ chief cells can be cultured to generate long-lived gastric organoids. Troy marks a specific, 'plastic' subset of differentiated chief cells capable of replenishing entire gastric units, essentially serving as a quiescent reserve stem cell.

Publication Title

Differentiated Troy+ chief cells act as reserve stem cells to generate all lineages of the stomach epithelium.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE35038
DNA Damage Response and Inflammatory Signaling Limit the MLL-ENL-induced Leukemogenesis in vivo
  • organism-icon Mus musculus
  • sample-icon 29 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Activation of the MLL-ENL-ERtm oncogene initiates aberrant proliferation of myeloid progenitors. Here, we show induction of a fail-safe mechanism mediated by the DNA damage response (DDR) machinery that results in activation of the ATR/ATM-Chk1/Chk2-p53/p21 checkpoint and cellular senescence at early stages of cellular transformation caused by a regulatable MLL-ENL-ERtm in mice. Furthermore, we identified the transcription program underlying this intrinsic anti-cancer barrier, and DDR-induced inflammatory regulators that fine-tune the signaling towards senescence, thereby modulating the fate of MLL-ENL-immortalized cells in a tissue-environment-dependent manner. Our results indicate that DDR is a rate-limiting event for acquisition of stem cell-like properties in MLL-ENL-ERtm-mediated transformation, as experimental inhibition of the barrier accelerated the transition to immature cell states and acute leukemia development.

Publication Title

DNA damage response and inflammatory signaling limit the MLL-ENL-induced leukemogenesis in vivo.

Sample Metadata Fields

Specimen part, Disease stage

View Samples
accession-icon SRP096557
Widespread Influence of 3'-end Structures on Mammalian mRNA Processing and Stability [CENPB-3''-end-library]
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Understanding the physiological relevance of structures in mammalian mRNAs remains elusive, especially considering the global unfolding of mRNA structures in eukaryotic organisms recently examined, as well as the decade-long observation that mRNAs generally seem no more likely than random sequences to be stably folded. Here we show that RNA secondary structures, mostly weak and close-to-random, facilitate the 3'-end processing of thousands of human mRNAs by juxtaposing poly(A) signals (PASs) and cleavage sites that are otherwise too far apart. Folding of these 3'-end structures also enhances mRNA stability. Global structure probing shows that 3'-end regions are indeed folded in cells despite substantial unfolding of PAS-upstream regions. Analyses of thousands of ectopically expressed variants prove that folding both enhances processing and increases stability. Mutagenesis of a genomic locus further implicates structure-controlled processing in regulating neighboring gene expression. These results reveal widespread roles for RNA structure in mammalian mRNA biogenesis and metabolism. Overall design: This series includes 8 samples designed to measure the efficiency of 3'' end processing from a reporter library expressed in HEK293T cells and HeLa cells, in steady state or in nascent RNAs (by 4sU labeling and capture).

Publication Title

Widespread Influence of 3'-End Structures on Mammalian mRNA Processing and Stability.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP012265
Small-RNAs in L4 and young adult stages
  • organism-icon Caenorhabditis elegans
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer

Description

Small endogenous C. elegans RNAs from L4 and young adult worms were prepared for sequencing using a protocol derived from Batista et al., (2008) and Lau et al. (2001). The small-RNA libraries were constructed using a method that does not require a 5' monophosphate (called 5' monophosphate-independent method, Ambros et al., 2003) to profile secondary siRNAs that have 5' triphosphorylated G. All preprocessed small-RNA reads were mapped to genome (ce6), allowing no mismatches. After excluding miRNAs, 21U RNAs, rRNAs, and other structural ncRNAs, the remaining reads were classified as 22G RNAs, 26G RNAs, and other siRNAs, based on their length and 5' terminal nucleotide. Overall design: Small-RNA libraries were sequenced in L4 and young adult stages in C.elegans.

Publication Title

Long noncoding RNAs in C. elegans.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP148856
Targeted transcriptional modulation with type I CRISPR-Cas systems in human cells (RNA-seq)
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

The development of CRISPR-Cas systems for targeting DNA and RNA in diverse organisms has transformed biotechnology and biological research. Moreover, the CRISPR revolution has highlighted bacterial adaptive immune systems as a rich and largely unexplored frontier for discovery of new genome engineering technologies. In particular, the class 2 CRISPR-Cas systems, which use single RNA-guided DNA-targeting nucleases such as Cas9, have been widely applied for targeting DNA sequences in eukaryotic genomes. Here, we report DNA-targeting and transcriptional control with class I CRISPR-Cas systems. Specifically, we repurpose the effector complex from type I variants of class 1 CRISPR-Cas systems, the most prevalent CRISPR loci in nature, that target DNA via a multi-component RNA-guided complex termed Cascade. We validate Cascade expression, complex formation, and nuclear localization in human cells and demonstrate programmable CRISPR RNA (crRNA)-mediated targeting of specific loci in the human genome. By tethering transactivation domains to Cascade, we modulate the expression of targeted chromosomal genes in both human cells and plants. This study expands the toolbox for engineering eukaryotic genomes and establishes Cascade as a novel CRISPR-based technology for targeted eukaryotic gene regulation. Overall design: Examination of transcriptome-wide changes in gene expression with Cascade-mediated activation of endogenous genes.

Publication Title

Targeted transcriptional modulation with type I CRISPR-Cas systems in human cells.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP181857
Early genome activation in Drosophila is extensive with an initial tendency for aborted transcripts and retained introns
  • organism-icon Drosophila melanogaster
  • sample-icon 41 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Control of metazoan embryogenesis shifts from maternal to zygotic gene products as the zygotic genome becomes transcriptionally activated. In Drosophila, zygotic genome activation (ZGA) begins with a minor wave, but technical challenges have hampered the identification of early transcripts or obscured the onset of their transcription. Here, we develop an approach to isolate transcribed mRNAs and apply it over the course of the minor wave and the start of the major wave of Drosophila ZGA. Our results increase known genes of the minor wave by 10 fold and show that this wave is continuous and gradual. Transposable-element mRNAs are also produced, but discontinuously. Genes in the early and middle part of the minor wave are short with few if any introns, and their transcripts are frequently aborted and tend to have retained introns, suggesting that inefficient splicing as well as rapid cell divisions constrain the lengths of early transcripts. Overall design: The goal of this study is to use NGS to identify zygotic transcripts produced during early zygotic genome activation in Drosophila.

Publication Title

Early genome activation in <i>Drosophila</i> is extensive with an initial tendency for aborted transcripts and retained introns.

Sample Metadata Fields

Subject

View Samples
accession-icon SRP018886
Global analyses of how 3'' UTR-isoform choice influences mRNA stability and translational efficiency
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000, Illumina Genome Analyzer II

Description

We obtained global measurements of decay and translation rates for mammalian mRNAs with alternative 3'' untranslated regions (3'' UTRs). Overall design: 1 3P-Seq sample from 3T3 cells and 1 3P-Seq sample from mouse ES cells; 2 2P-Seq steady state and 4 2P-Seq with actinomycin D; 6 polysome fraction 2P-Seq

Publication Title

3' UTR-isoform choice has limited influence on the stability and translational efficiency of most mRNAs in mouse fibroblasts.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon SRP007668
MicroRNA expression during cell cycle arrest
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

The miR-16 family, which targets genes important for the G1-S transition, is a known modulator of the cell cycle, and members of this family are often deleted or down-regulated in many types of cancers. Here we report the reciprocal relationship - that of the cell cycle controlling the miR-16 family. Levels of this family increase rapidly as cells are arrested in G0. Conversely, as cells are released from G0 arrest, levels of the miR-16 family rapidly decrease. Such rapid changes are made possible by the unusual instabilities of several family members. The repression mediated by the miR-16 family is sensitive to these cell cycle changes, which suggests that the rapid up-regulation of the miR-16 family reinforces cell cycle arrest in G0. Upon cell cycle re-entry, the rapid decay of several members allows levels of the family to decrease, alleviating repression of target genes and allowing proper resumption of the cell cycle. Overall design: Small RNAs were profiled by high-throughput sequencing either during synchronous release after serum starvation or during cell-cycle arrest by contact inhibition.

Publication Title

MicroRNA destabilization enables dynamic regulation of the miR-16 family in response to cell-cycle changes.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact