This study seeks to understand the mechanisms behind enhanced lymphomagenesis observed in ImHABCL6/Uchl1 mice compared with ImHABCL6 alone. As the lymphomas arise from germinal center (GC) B-cells, we reasoned that transgenic Uchl1 altered the gene expression patterns in GC B-cells from these animals. We therefore isolated pre-malignant GC B-cells and examined the gene expression patterns to identify pathways affected by the addition of Uchl1.
UCH-L1 is induced in germinal center B cells and identifies patients with aggressive germinal center diffuse large B-cell lymphoma.
Specimen part
View SamplesTranslation is a critical cellular process to synthesize proteins from their transcripts. However, translational regulation in antigen-specific T cells in vivo has not been well defined.
Translation is actively regulated during the differentiation of CD8<sup>+</sup> effector T cells.
Sex, Specimen part
View SamplesIn adipocyte-specific knockout mice (Bcl6AKO), we found that Bcl6 deletion results in strikingly increased inguinal but not perigonadal adipocyte size and tissue mass in addition to marked insulin sensitivity. Genome-wide DNA binding and RNA expression analyses revealed that BCL6 controls gene networks involved in cell growth and fatty acid biosynthesis. Thus, our studies identify BCL6 as a negative regulator of subcutaneous adipose tissue expansion and metabolic health. Overall design: Identification of adipocyte BCL6-regulated genes
Loss of Transcriptional Repression by BCL6 Confers Insulin Sensitivity in the Setting of Obesity.
Sex, Specimen part, Subject
View SamplesWe performed a microarray screening of adult rat retinas to identify genes that could show and up- or down-regulation due to exposure to light.
A component of retinal light adaptation mediated by the thyroid hormone cascade.
Specimen part, Treatment
View SamplesTendon is a hypocellular tissue that contains functional cable-like units of type I collagen responsible for the transmission of force from muscle to bone. In the setting of injury or disease, patients can develop chronic tendinopathies that are characterized by pain, loss of function and persistent inflammatory changes that are often difficult to treat. Platelet-rich plasma (PRP) has shown promise in the treatment of chronic tendinopathy, but little is known about the mechanisms by which PRP can improve tendon healing. PRP contains many different growth factors and cytokines, and since these proteins can both activate and inhibit various signaling pathways it has been challenging to determine precisely which signaling pathways and cellular responses are most important. Using state-of-the-art bioinformatics tools and genome wide-expression profiling, the purpose of this study was to determine the signaling pathways activated within cultured tendon fibroblasts in response to PRP treatment.
Platelet-Rich Plasma Activates Proinflammatory Signaling Pathways and Induces Oxidative Stress in Tendon Fibroblasts.
Specimen part
View SamplesMetzincins and related genes (MARGS) play important roles in ECM remodeling in fibrotic conditions.
Renal Fibrosis mRNA Classifier: Validation in Experimental Lithium-Induced Interstitial Fibrosis in the Rat Kidney.
Sex, Specimen part
View SamplesGene expression profiling leading to the identification of novel components in the EDS1/PAD4-regulated defence pathway
Salicylic acid-independent ENHANCED DISEASE SUSCEPTIBILITY1 signaling in Arabidopsis immunity and cell death is regulated by the monooxygenase FMO1 and the Nudix hydrolase NUDT7.
Age, Specimen part, Time
View SamplesWe generated a gene replacement allele of the E-cadherin locus that express an N-cadherin-GFP fusion in ES cells. Expression profiles of homozygous and heterozygous knock-in ES cells were analyzed in comparison to wt ES cells.
Adhesion, but not a specific cadherin code, is indispensable for ES cell and induced pluripotency.
No sample metadata fields
View SamplesThe cortical area map is initially patterned by transcription factor (TF) gradients in the neocortical primordium, which define a protomap in the embryonic ventricular zone (VZ). However, mechanisms that propagate regional identity from VZ progenitors to cortical plate (CP) neurons are unknown. Here we show that the VZ, subventricular zone (SVZ), and CP contain distinct molecular maps of regional identity, reflecting different gene expression gradients in radial glia progenitors, intermediate progenitors, and projection neurons, respectively. The intermediate map in SVZ is modulated by Eomes (also known as Tbr2), a T-box TF. Eomes inactivation caused rostrocaudal shifts in SVZ and CP gene expression, with loss of corticospinal axons and gain of corticotectal projections. These findings suggest that cortical areas and connections are shaped by sequential maps of regional identity, propagated by the Pax6 Eomes Tbr1 TF cascade. In humans, PAX6, EOMES, and TBR1 have been linked to intellectual disability and autism.
The protomap is propagated to cortical plate neurons through an Eomes-dependent intermediate map.
Specimen part
View SamplesAreas and layers of the cerebral cortex are specified by genetic programs that are initiated in progenitor cells and then, implemented in postmitotic neurons. Here, we report that Tbr1, a transcription factor expressed in postmitotic projection neurons, exerts positive and negative control over both regional (areal) and laminar identity. Tbr1 null mice exhibited profound defects of frontal cortex and layer 6 differentiation, as indicated by down-regulation of gene-expression markers such as Bcl6 and Cdh9. Conversely, genes that implement caudal cortex and layer 5 identity, such as Bhlhb5 and Fezf2, were up-regulated in Tbr1 mutants. Tbr1 implements frontal identity in part by direct promoter binding and activation of Auts2, a frontal cortex gene implicated in autism. Tbr1 regulates laminar identity in part by downstream activation or maintenance of Sox5, an important transcription factor controlling neuronal migration and corticofugal axon projections. Similar to Sox5 mutants, Tbr1 mutants exhibit ectopic axon projections to the hypothalamus and cerebral peduncle. Together, our findings show that Tbr1 coordinately regulates regional and laminar identity of postmitotic cortical neurons.
Tbr1 regulates regional and laminar identity of postmitotic neurons in developing neocortex.
Specimen part
View Samples