Gene knockdown of PBK led to decreased proliferation and sphere formation in the GSC cultures. Treatment of cells with different concentrations of HI-TOPK-032 almost completely abolished growth and proliferation and elicited a large increase in apoptosis
Targeting PBK/TOPK decreases growth and survival of glioma initiating cells in vitro and attenuates tumor growth in vivo.
Specimen part, Cell line
View SamplesThe normally virulent type-I RH parasite is rendered avirulent when lacking ROP5. The avirulent phenotype is a consequence of interaction with the host innate immune system. We sought to understand if ROP5 alters host gene expression in order to escape host defenses. We saw no gene expression differences between host cells infected with wt (RHku80) or RHku80rop5 parasites. We have included uninfected HFF samples that were harvested in parallel with the infected samples.
The polymorphic pseudokinase ROP5 controls virulence in Toxoplasma gondii by regulating the active kinase ROP18.
Specimen part
View SamplesThe objective of this study was the assessment of transcriptional dysregulation in particular with regard to B-cell differentiation factors. Most studies focus on cross-section analyses of various leukemia subtypes to identify differentially regulated genes lacking suitable reference models. Here we applied comparative intraindividual transcriptome analysis of B-precursor ALL of childhood, which introduces a side-by-side analysis of leukemic cells and matched normal lymphoblasts from the same individual in complete continuous remission after the end of re-induction therapy. This approach reduces noise by eliminating interindividual variability.
Aberrant ZNF423 impedes B cell differentiation and is linked to adverse outcome of ETV6-RUNX1 negative B precursor acute lymphoblastic leukemia.
Specimen part, Subject
View SamplesThe objective is to relate changes in expression of DOR/TRP53INP2, a factor involved in thyroid hormone action and autophagy, to body composition in mice fed a fat (FD) or high fat diet (HFD) for 8 days and in a genetically obese mouse model.
Extrinsic and intrinsic regulation of DOR/TP53INP2 expression in mice: effects of dietary fat content, tissue type and sex in adipose and muscle tissues.
Sex, Age, Specimen part
View SamplesBatf3 regulates key CD8alpha DC-specific genes.
Compensatory dendritic cell development mediated by BATF-IRF interactions.
Specimen part
View Samplesgamma delta intraepithelial lymphocytes were isolated from the colons of DSS-treated and untreated mice. Total RNAs were isolated and compared by Affymetrix DNA microarray.
Reciprocal interactions between commensal bacteria and gamma delta intraepithelial lymphocytes during mucosal injury.
No sample metadata fields
View SamplesThe goal of the microarray experiment was to do a head-to-head comparison of the U1 Adaptor technology with siRNA in terms of specificity at the genome-wide level. U1 Adaptors represent a novel gene silencing method that employs a mechanism of action distinct from antisense and RNA interference (RNAi). The U1 Adaptor is a bifunctional oligonucleotide having a Target Domain that is complementary to a site in the target gene's terminal exon and a U1 Domain that binds to the U1 small nuclear RNA (snRNA) component of the U1 small nuclear ribonucleoprotein (U1 snRNP) splicing factor. Tethering of U1 snRNP to the target pre-mRNA inhibits 3' end processing (i.e., polyA tail addition) leading to degradation of that RNA species within the nucleus thereby reducing mRNA levels. We demonstrate that U1 Adaptors can specifically inhibit both reporter and endogenous genes. Further, targeting the same gene either with multiple U1 Adaptors or with U1 Adaptors and small interfering RNAs (siRNAs), strongly enhances gene silencing, the latter as predicted from their distinct mechanisms of action. Such combinatorial targeting requires lower amounts of oligonucleotides to achieve potent silencing.
Gene silencing by synthetic U1 adaptors.
No sample metadata fields
View SamplesThe adult pancreas is capable of limited regeneration after injury, but has no defined stem cell population. The cell types and molecular signals that govern the production of new pancreatic tissue are not well understood. Here we show that inactivation of the SCF-type E3 ubiquitin ligase substrate recognition component Fbw7 induces pancreatic ductal cells to reprogram into -cells. The induced -cells resemble islet -cells in morphology and histology, express genes essential for -cell function, and release insulin upon glucose challenge. Thus, loss of Fbw7 appears to reawaken an endocrine developmental differentiation program in adult pancreatic ductal cells. Our study highlights the plasticity of seemingly differentiated adult cells, identifies Fbw7 as a master regulator of cell fate decisions in the pancreas, and reveals adult pancreatic duct cells as a latent multipotent cell type.
Loss of Fbw7 reprograms adult pancreatic ductal cells into α, δ, and β cells.
Specimen part, Treatment
View SamplesBy employing FOXA2-deficient mouse models coupled with LIF repletion, we reveal definitive roles of uterine glands in pregnancy establishment.These studies provide original evidence that uterine glands synchronize embryo-endometrial interactions, coordinate on-time embryo implantation, and impact stromal cell decidualization, thereby ensuring embryo viability, placental growth, and pregnancy success. Overall design: Uterine transcriptomes of control and Foxa2-deficient mice were generated on gestational day (GD) 4 and GD 6 following LIF-repletion. All time points were done in quadruplicates.
Uterine glands coordinate on-time embryo implantation and impact endometrial decidualization for pregnancy success.
Specimen part, Cell line, Subject
View SamplesStem cell development requires selection of specific genetic programs to direct cellular fate. Using microarray technology, we profile expression trends at selected timepoints during stem cell differentiation to characterize these changes.
Genomic chart guiding embryonic stem cell cardiopoiesis.
Specimen part
View Samples