The goal of this study was to identify potential AMH-induced genes and regulatory networks controlling regression by RNA-Seq transcriptome analysis of differences in Müllerian Duct mesenchyme between males (AMH signaling on) and females (AMH signaling off) in purified fetal Müllerian Duct mesenchymal cells. This analysis found 82 genes up-regulated in males during MD regression and identified Osterix (Osx)/Sp7, a key transcriptional regulator of osteoblast differentiation and bone formation, as a novel downstream effector of AMH signaling during MD regression. Overall design: Müllerian Duct mesenchymal cells mRNA profiles from 2-7 embryonic day 14.5 embryos were generated by deep sequencing, in triplicate, using Illumina HiSeq 2000.
<i>Osterix</i> functions downstream of anti-Müllerian hormone signaling to regulate Müllerian duct regression.
Sex, Specimen part, Cell line, Subject
View SamplesThe Lim1 gene has essential functions during several stages of kidney development. In particular, a tissue specific knockout in the early metanephric mesenchyme results in the formation of the earliest nephron precursor, the renal vesicle, but failure of this structure to progress to the next stage, the comma shaped body. To better understand the molecular nature of this developmental arrest we used a laser capture microdissection-microarray strategy to examine the perturbed gene expression pattern of the mutant renal vesicles. Among the genes found differently expressed were Chrdl2, an inhibitor of BMP signaling, the pro-apoptotic factor Bmf, as well as myob5, an atypical myosin which modulates chemokine and transferring signaling, and pdgfr1, which is important in epithelial folding. Of particular interest, the microarray data indicated that the Dkk1 gene, which encodes an inhibitor of Wnt signaling, was downregulated nine fold in mutants. This was confirmed by in situ hybridizations. It is interesting to note that Lim1 and Dkk1 mutant mice have striking similarities in phenotype. These results suggest that the Dkk1 gene might be a key downstream effector of Lim1 function.
Laser capture-microarray analysis of Lim1 mutant kidney development.
No sample metadata fields
View SamplesBACKGROUND: Lim1 is a homeobox gene that is essential for nephrogenesis. During metanephric kidney development, Lim1 is expressed in the nephric duct, ureteric buds, and the induced metanephric mesenchyme. Conditional ablation of Lim1 in the metanephric mesenchyme blocks the formation of nephrons at the nephric vesicle stage, leading to the production of small, non-functional kidneys that lack nephrons.
Gene expression profiles in developing nephrons using Lim1 metanephric mesenchyme-specific conditional mutant mice.
No sample metadata fields
View SamplesThe objective of this study was to understand the gene expression changes during granulosa cell tumor development in Smad1/5/8 mutant ovaries.
Conditional deletion of Smad1 and Smad5 in somatic cells of male and female gonads leads to metastatic tumor development in mice.
No sample metadata fields
View Samplesgamma delta intraepithelial lymphocytes were isolated from the colons of DSS-treated and untreated mice. Total RNAs were isolated and compared by Affymetrix DNA microarray.
Reciprocal interactions between commensal bacteria and gamma delta intraepithelial lymphocytes during mucosal injury.
No sample metadata fields
View SamplesThe adult pancreas is capable of limited regeneration after injury, but has no defined stem cell population. The cell types and molecular signals that govern the production of new pancreatic tissue are not well understood. Here we show that inactivation of the SCF-type E3 ubiquitin ligase substrate recognition component Fbw7 induces pancreatic ductal cells to reprogram into -cells. The induced -cells resemble islet -cells in morphology and histology, express genes essential for -cell function, and release insulin upon glucose challenge. Thus, loss of Fbw7 appears to reawaken an endocrine developmental differentiation program in adult pancreatic ductal cells. Our study highlights the plasticity of seemingly differentiated adult cells, identifies Fbw7 as a master regulator of cell fate decisions in the pancreas, and reveals adult pancreatic duct cells as a latent multipotent cell type.
Loss of Fbw7 reprograms adult pancreatic ductal cells into α, δ, and β cells.
Specimen part, Treatment
View SamplesThis study delineated how small intestinal resident microflora impact gene expression in Paneth cells.
Symbiotic bacteria direct expression of an intestinal bactericidal lectin.
No sample metadata fields
View SamplesFetal liver of E14.5 RNaseh2b KOF and Rnaseh2b wild type embryos was isolated, RNA was extracted and microarray analysis using Affymetrix Mouse 430 2.0 gene chip was performed
Mammalian RNase H2 removes ribonucleotides from DNA to maintain genome integrity.
Specimen part
View SamplesAg recognition via the TCR is necessary for the expansion of specific T cells that then contribute to adaptive immunity as effector and memory cells. Because CD4+ and CD8+ T cells differ in terms of their priming APCs and MHC ligands we compared their requirements of Ag persistence during their expansion phase side by side. Proliferation and effector differentiation of TCR transgenic and polyclonal mouse T cells were thus analyzed after transient and continuous TCR signals. Following equally strong stimulation, CD4+ T cell proliferation depended on prolonged Ag presence, whereas CD8+ T cells were able to divide and differentiate into effector cells despite discontinued Ag presentation. CD4+ T cell proliferation was neither affected by Th lineage or memory differentiation nor blocked by coinhibitory signals or missing inflammatory stimuli. Continued CD8+ T cell proliferation was truly independent of self-peptide/MHC-derived signals. The subset divergence was also illustrated by surprisingly broad transcriptional differences supporting a stronger propensity of CD8+ T cells to programmed expansion. These T cell data indicate an intrinsic difference between CD4+ and CD8+ T cells regarding the processing of TCR signals for proliferation. We also found that the presentation of a MHC class IIrestricted peptide is more efficiently prolonged by dendritic cell activation in vivo than a class I bound one. In summary, our data demonstrate that CD4+ T cells require continuous stimulation for clonal expansion, whereas CD8+ T cells can divide following a much shorter TCR signal.
Differential kinetics of antigen dependency of CD4+ and CD8+ T cells.
Specimen part, Treatment
View SamplesMemory B cells play essential roles in the maintenance of long-term immunity and may be important in the pathogenesis of autoimmune disease, but how these cells are distinguished from their nave precursors is poorly understood. To address this, it would be important to understand how gene expression differs between memory and naive B cells in order to elucidate memory-specific functions. Using model systems that help overcome the lack of murine memory-specific markers and the low frequency of antigen-specific memory and nave cells, we undertook a global comparison of gene expression between memory B cells and their naive precursors.
Systematic comparison of gene expression between murine memory and naive B cells demonstrates that memory B cells have unique signaling capabilities.
No sample metadata fields
View Samples