The p53 family is known as a family of transcription factors with functions in tumor suppression and development. Whereas the central DNA binding domain is highly conserved among the three family members p53, p63 and p73, the C-terminal domains (CTDs) are diverse and subject to alternative splicing and post-translational modification. Here we demonstrate that the CTDs strongly influence DNA binding and transcriptional activity. While p53 and the p73 isoform p73gamma have basic CTDs and form weak sequence-specific protein-DNA complexes, the major p73 isoforms alpha, beta and delta have neutral CTDs and bind DNA strongly. A basic CTD has been previously shown to enable sliding along the DNA backbone and to facilitate the search for binding sites in the complex genome. Our experiments, however, reveal that a basic CTD also reduces protein-DNA complex stability, intranuclear mobility, promoter occupancy in vivo, transgene activation and induction of cell cycle arrest or apoptosis. A basic CTD in p53 and p73gamma therefore provides both positive and negative regulatory functions presumably to enable rapid switching of protein activity in response to stress. In contrast, most p73 isoforms exhibit constitutive DNA binding activity consistent with a predominant role in developmental control.
C-terminal diversity within the p53 family accounts for differences in DNA binding and transcriptional activity.
No sample metadata fields
View Samplessh RNA of p73 in Fibroblasts compared to non-silencing control
p73 poses a barrier to malignant transformation by limiting anchorage-independent growth.
No sample metadata fields
View SamplesEmbryonic stem cell derived microglia (ESdM) were treated with different inflammatory stimulants to analyze their ability to adopt different activation states. These were characterized using ELISA, flow cytometry, quantitative real time PCR, and RNA-sequencing. Overall design: Analysis of cytokine secretion, cell surface marker, gene expression, and RNA-seq expression data of differentially activated ESdM
Characterization of inflammatory markers and transcriptome profiles of differentially activated embryonic stem cell-derived microglia.
No sample metadata fields
View SamplesBacteria selectively consume some carbon sources over others through a regulatory mechanism termed catabolite repression. Here, we show that the base pairing RNA Spot 42 plays a broad role in catabolite repression in Escherichia coli by directly repressing genes involved in central and secondary metabolism, redox balancing, and the consumption of diverse non-preferred carbon sources. Many of the genes repressed by Spot 42 are transcriptionally activated by the global regulator CRP. Since CRP represses Spot 42, these regulators participate in a specific regulatory circuit called a multi-output feedforward loop. We found that this loop can reduce leaky expression of target genes in the presence of glucose and can maintain repression of target genes under changing nutrient conditions. Our results suggest that base pairing RNAs in feedforward loops can help shape the steady-state levels and dynamics of gene expression.
The base-pairing RNA spot 42 participates in a multioutput feedforward loop to help enact catabolite repression in Escherichia coli.
Specimen part
View SamplesThe transcriptome is the complete set of all RNA transcripts produced by the genome in a cell and reflects the genes that are being actively expressed. Transcriptome analysis is essential for understanding the genetic mechanism controlling the phenotype of a cell.
Characterization of transcriptomes of cochlear inner and outer hair cells.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
A chromatin-modifying function of JNK during stem cell differentiation.
Specimen part, Treatment
View SamplesExpression profiling of from DMSO and SP600125 treated glutamatergic neurons reveals JNK target genes that are transcriptionally regulated by JNK signaling.
A chromatin-modifying function of JNK during stem cell differentiation.
Specimen part
View SamplesTo understand the basic biological property of hair cells (HCs) from lower vertebrates, we examined transcriptomes of adult zebrafish HCs. GFP-labeled HCs were isolated from the utricle, saccule, and lagena, the three inner-ear sensory epithelia of a pou4f3 promoter-driven GAP-GFP line of transgenic zebrafish. 2,000 HCs and 2,000 non-sensory cells from the inner ear were individually collected by suction pipet technique. RNA sequencing was performed and the resulting sequences were mapped, analyzed, and compared. Comparisons allow us to identify enriched genes in HCs, which may underlie HC specialization. Overall design: Examination of transcriptomes of adult zebrafish inner ear hair cells and surrounding cells individually collected and sorted using pou4f3 promoter-driven GFP marking hair cells.
RNA-seq transcriptomic analysis of adult zebrafish inner ear hair cells.
No sample metadata fields
View SamplesWe have characterised the zebrafish ortholog, setb, and investigated its role in embryogenesis. Phylogenetic analysis showed that zebrafish Setb has an amino acid sequence identity of approximately 96% with the mammalian orthologs. Whole mount immunofluorescence analysis revealed that Setb is expressed mainly in the eye, the lateral line neuromasts and the olfactory pit. Knockdown of setb using antisense morpholino oligonucleotides resulted in increased apoptosis, reduced cell proliferation and severe morphological defects. The morphant phenotypes were partially rescued when setb MO1 was co-injected with human set mRNA. In vivo labelling of hair cells in the lateral line of setb morphants with the vital fluorescent dye FM1-43 showed a significant decreased number of functional neuromasts. Gene expression analysis of setb morphants, employing DNA microarrays revealed a role of Setb in neurogenesis and the mechanosensory lateral line system.
The zebrafish homologs of SET/I2PP2A oncoprotein: expression patterns and insights into their physiological roles during development.
Treatment
View SamplesCre recombinase-mediated conditional knockout of floxed Dicer1 alleles causes depletion of small RNAs including microRNAs, which function to repress target mRNA expression by inhibiting translation and/or stimulating mRNA degradation.
MicroRNA-183 family expression in hair cell development and requirement of microRNAs for hair cell maintenance and survival.
Specimen part
View Samples