Transcriptomic studies revealed that hundreds of mRNAs show differential expression in the brains of sleeping versus awake rats, mice, flies, and sparrows. Although these results have offered clues regarding the molecular consequences of sleep and sleep loss, their functional significance thus far has been limited. This is because the previous studies pooled transcripts from all brain cells, including neurons and glia.
Transcriptome profiling of sleeping, waking, and sleep deprived adult heterozygous Aldh1L1 - eGFP-L10a mice.
Disease
View SamplesTranscriptomic studies revealed that hundreds of mRNAs show differential expression in the brains of sleeping versus awake rats, mice, flies, and sparrows. Although these results have offered clues regarding the molecular consequences of sleep and sleep loss, their functional significance thus far has been limited. This is because the previous studies pooled transcripts from all brain cells, including neurons and glia.
Effects of sleep and wake on oligodendrocytes and their precursors.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Identification of post-transcriptional regulatory networks during myeloblast-to-monocyte differentiation transition.
Specimen part, Treatment
View SamplesTreatment of leukemia cells with 1,25-dihydroxyvitamin D3 may overcome their differentiation block and lead to the transition from myeloblasts to monocytes. To identify microRNA-mRNA networks relevant for myeloid differentiation, we profiled the expression of mRNAs and microRNAs associated to the low- and high-density ribosomal fractions in leukemic cells and in their differentiated monocytic counterpart. Intersection between mRNAs shifted across the fractions after treatment with putative target genes of modulated microRNAs showed a series of molecular networks relevant for the monocyte cell fate determination
Identification of post-transcriptional regulatory networks during myeloblast-to-monocyte differentiation transition.
Specimen part, Treatment
View SamplesThe efficacy and exceptionally good tolerance of estrogen blockade in the treatment of breast cancer is well recognized but novel agents are required, especially to take advantage of the multiple consecutive responses obtained in breast cancer progressing following previous hormone therapy, thus delaying the use of cytotoxic chemotherapy with its usually serious side effects. Acolbifene (ACOL) is a novel and unique antiestrogen completely free of estrogen-like activity in both the mammary gland and uterus while preventing bone loss. From the preclinical and clinical data so-far available, this new antiestrogen represents a unique opportunity for a highly potent and specific blockade of estrogen action in the mammary gland and uterus while exerting estrogen-like beneficial effects in other tissues (selective estrogen receptor modulator or SERM activity). In order to better understand the specificity of action of acolbifene, we have used Affymetrix GeneChips containing 45,000 probe sets to analyze 34,000 genes to determine the specificity of this compound compared to the pure antiestrogen fulvestrant, as well as the mixed antagonists/agonists tamoxifen and raloxifene to block the effect of estradiol (E2) and to induce effects of their own on gene expression in the mouse mammary gland. The genes modulated by E2 were those identified in two separate experiments and validated by quantitative real-time PCR (Q_RT-PCR). Three hours after the single subcutaneous injection of E2 (0.05 ug), the simultaneous administration of acolbifene, fulvestrant, tamoxifen and raloxifene blocked by 98%, 62%, 43% and 92% the number of E2-upregulated genes, respectively. On the other hand, 70%, 10%, 25% and 55% of the genes down-regulated by E2 were blocked by the same compounds. Acolbifene was also the compound which, when used alone, modulated the smallest number of genes also influenced by E2, namely 4%, thus possibly explaining the potent tumoricidal action of this compound in human breast cancer xenografts where 61% of tumors disappeared, thus bringing a new paradigm in the hormonal therapy of breast cancer.
Specific transcriptional response of four blockers of estrogen receptors on estradiol-modulated genes in the mouse mammary gland.
Specimen part, Treatment
View SamplesThree different progenitor cell subsets in subcutaneous and visceral adipose tissues derived from 5 obese patients were subjected to AmpliSeq transcriptome profiling. Transcriptomic profiles were analyzed to compare progenitor cell subsets and the impact of subcutaneous and visceral adipose tissue location. Overall design: Transcriptomic profiling of 3 different progenitor cell types in subcutaneous and visceral adipose tissues derived from 5 obese patients (3X2X5=30 samples).
Lobular architecture of human adipose tissue defines the niche and fate of progenitor cells.
Subject
View SamplesTo compare the impact of hematopoietic-specific Brpf1 gene inactivation, LSK (Lin-Sca1+cKit1+) cells were sorted from wild-type and Brpf1-null fetal liver cells for RNA-Seq. Overall design: Four E14.5 embryos were used to pool sufficient LSK cells for total RNA isolation and subsequent sequencing on HiSq2500. Two independent pairs of wild-type and mutant RNA samples (each of which contained LSK cells pooled from four embryos) were used for oligo-dT primed RNA Seq.
BRPF1 is essential for development of fetal hematopoietic stem cells.
Specimen part, Subject
View SamplesThe p90 ribosomal S6 kinase (RSK) family, a downstream target of Ras/extracellular signal-regulated kinase (ERK) signaling, can mediate cross-talk with the mammalian target of rapamycin complex 1 (mTORC1) pathway. As RSK connects two oncogenic pathways in gliomas, we investigated the protein levels of the RSK isoforms RSK1-4 in non-tumoral brain (NB) and grade I-IV gliomas. RSK4 expression was not detected in any brain tissues, whereas RSK3 expression was very low, with GBMs demonstrating the lowest RSK3 protein levels. When compared to NB or low-grade gliomas (LGG), a group of glioblastomas (RSK1hi) that excluded long-survivor cases expressed higher levels of RSK1. No difference was observed in RSK2 median-expression levels among NB and gliomas; however, high levels of RSK2 in glioblastomas (GBM) were associated with worse survival. RSK1hi and, to a lesser extent, RSK2hi GBMs, showed higher levels of phosphorylated RSK, which indicates RSK activation. Transcriptome analysis indicated that most RSK1hi GBMs belonged to the mesenchymal subtype, and RSK1 expression strongly correlated with gene expression signature of immune infiltrates, in particular of activated-natural killer cells and M2 macrophages. In an independent cohort, we confirmed that RSK1hi GBMs exclude long-survivors, and RSK1 expression was associated with high protein levels of the mesenchymal subtype marker LAPTM5, as well as with high expression of CD68, which indicated the presence of infiltrating immune cells. An RSK1 signature was obtained based on differentially expressed mRNAs and validated in public glioma datasets. Enrichment of RSK1 signature followed glioma progression, recapitulating RSK1 protein expression, and was associated with worse survival not only in GBM but also in LGG. In conclusion, both RSK1 and RSK2 associate with glioma malignity, but displaying isoform-specific peculiarities. The progression-dependent expression and association with immune infiltration, suggests RSK1 as a potential progression marker and therapeutic target for gliomas.
Aberrant expression of RSK1 characterizes high-grade gliomas with immune infiltration.
Specimen part
View SamplesBackground. Primary cilia (PC) are solitary antennae present at the cell surface. These non-motile cilia play an important role in organ development and tissue homeostasis through the transduction of the Hedgehog (Hh) signaling pathway. We recently revealed the presence of PC in the epithelium of the developing epididymis, an organ of the male reproductive system whose dysfunction triggers male infertility. Acknowledging that systemic blockade of the Hh pathway trigger epididymal dysfunctions in vivo, our main goals were 1) to portray the epididymal Hh environment, 2) to determine the direct responsiveness of epididymal epithelial cells to Hh, and 3) to define the contribution of PC to the transduction of this pathway. Results. The Hh ligands Indian and Sonic hedgehog (Ihh and Shh) were respectively located in principal and clear cells of the mouse epididymis by immunofluorescent staining. The propensity of epididymal principal cells to respond to Hh signaling was assessed on immortalized epididymal DC2 cells by western-blot, confocal imaging and 3D-reconstruction. Our results indicate that epididymal principal cells secrete Ihh and expose PC that co-localize with the conventional acetylated tubulin/Arl13b ciliary markers, as well as with GLI3 Hh signaling factor. Gene expression microarray profiling indicated that the expression of 43 and 248 genes was respectively and significantly modified following pharmacological treatment of DC2 cells with the Hh agonist SAG (250 nM) or the Hh antagonist cyclopamine (20 µM) compared with the control. Among Hh target genes identified, 6.7 % presented perfect matches for GLI-transcription factor consensus sequences, and the majority belonged to interferon-dependent immune response and lipocalin 2 pathways. Finally, the contribution of epididymal PC to the transduction of canonical Hh pathway was validated by ciliobrevinD treatment, which induced a significant decrease of PC length and the expressional reduction of Hh signalling targets. Conclusions. All together our data indicate that PC from epithelial principal cells regulate gene expression profile through a possible autocrine Hh signaling. This provides new hypotheses regarding the potential contribution of PC and Hh signaling in intercellular cross-talk and immunological regulation of the epididymis.
Hedgehog signaling pathway regulates gene expression profile of epididymal principal cells through the primary cilium.
Cell line, Treatment
View SamplesIn rodents, the uterus of a mature
Fine temporal analysis of DHT transcriptional modulation of the ATM/Gadd45g signaling pathways in the mouse uterus.
No sample metadata fields
View Samples