refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 423 results
Sort by

Filters

Technology

Platform

accession-icon GSE143829
Hedgehog signaling pathway regulates gene expression profiling of epididymal principal cells through the primary cilium
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Clariom S Array (clariomsmouse)

Description

Background. Primary cilia (PC) are solitary antennae present at the cell surface. These non-motile cilia play an important role in organ development and tissue homeostasis through the transduction of the Hedgehog (Hh) signaling pathway. We recently revealed the presence of PC in the epithelium of the developing epididymis, an organ of the male reproductive system whose dysfunction triggers male infertility. Acknowledging that systemic blockade of the Hh pathway trigger epididymal dysfunctions in vivo, our main goals were 1) to portray the epididymal Hh environment, 2) to determine the direct responsiveness of epididymal epithelial cells to Hh, and 3) to define the contribution of PC to the transduction of this pathway. Results. The Hh ligands Indian and Sonic hedgehog (Ihh and Shh) were respectively located in principal and clear cells of the mouse epididymis by immunofluorescent staining. The propensity of epididymal principal cells to respond to Hh signaling was assessed on immortalized epididymal DC2 cells by western-blot, confocal imaging and 3D-reconstruction. Our results indicate that epididymal principal cells secrete Ihh and expose PC that co-localize with the conventional acetylated tubulin/Arl13b ciliary markers, as well as with GLI3 Hh signaling factor. Gene expression microarray profiling indicated that the expression of 43 and 248 genes was respectively and significantly modified following pharmacological treatment of DC2 cells with the Hh agonist SAG (250 nM) or the Hh antagonist cyclopamine (20 µM) compared with the control. Among Hh target genes identified, 6.7 % presented perfect matches for GLI-transcription factor consensus sequences, and the majority belonged to interferon-dependent immune response and lipocalin 2 pathways. Finally, the contribution of epididymal PC to the transduction of canonical Hh pathway was validated by ciliobrevinD treatment, which induced a significant decrease of PC length and the expressional reduction of Hh signalling targets. Conclusions. All together our data indicate that PC from epithelial principal cells regulate gene expression profile through a possible autocrine Hh signaling. This provides new hypotheses regarding the potential contribution of PC and Hh signaling in intercellular cross-talk and immunological regulation of the epididymis.

Publication Title

Hedgehog signaling pathway regulates gene expression profile of epididymal principal cells through the primary cilium.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE69079
Expression data of sleeping, waking, and sleep deprived adult heterozygous aldh1l1 eGFP-L10a mice
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Transcriptomic studies revealed that hundreds of mRNAs show differential expression in the brains of sleeping versus awake rats, mice, flies, and sparrows. Although these results have offered clues regarding the molecular consequences of sleep and sleep loss, their functional significance thus far has been limited. This is because the previous studies pooled transcripts from all brain cells, including neurons and glia.

Publication Title

Transcriptome profiling of sleeping, waking, and sleep deprived adult heterozygous Aldh1L1 - eGFP-L10a mice.

Sample Metadata Fields

Disease

View Samples
accession-icon SRP067241
Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals (IVF)
  • organism-icon Mus musculus
  • sample-icon 280 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Parental dietary conditions can influence the metabolic traits of offspring. In mice, paternal consumption of low protein diet alters cholesterol and lipid metabolism of progeny. Here, we examine RNA species expressed in male reproductive tissues of mice. Protein restriction leads to altered levels of multiple small RNAs in mature sperm, as well as throughout the male reproductive tract, with decreased levels of let-7 family members and increased levels of 5’ fragments of tRNA-Gly isoacceptors. Intriguingly, tRNA fragments are scarce in the testis, but their levels increase in sperm during post-testicular maturation in the epididymis. We find that epididymosomes – extracellular vesicles which fuse with sperm during epididymal transit – exhibit RNA payloads closely matching those of mature sperm, and can deliver tRNA fragments to immature sperm in vitro both in mouse and in bull. Finally, we show that tRNA-Gly-GCC fragments play a role in repressing genes associated with the endogenous retroelement MERVL, both in ES cells and in preimplantation embryos. Our results shed light on small RNA biogenesis during post-testicular sperm maturation, and link tRNA fragments to regulation of endogenous retroelements active in the early embryo. Overall design: IVF was carried out using oocytes from females fed Control diet (C) and sperm from males fed Control diet or Low Protein diet (LP). Zygotes were then developed 2 cell (2C), 4 cell (4C), 8 cell (8C), Morula (M) or Blastocyst (B) embryonic developmental stages when single embryo RNA seq was carried out to study gene expression changes.

Publication Title

Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP067082
Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals (single embryo)
  • organism-icon Mus musculus
  • sample-icon 187 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Parental dietary conditions can influence the metabolic traits of offspring. In mice, paternal consumption of low protein diet alters cholesterol and lipid metabolism of progeny. Here, we examine RNA species expressed in male reproductive tissues of mice. Protein restriction leads to altered levels of multiple small RNAs in mature sperm, as well as throughout the male reproductive tract, with decreased levels of let-7 family members and increased levels of 5’ fragments of tRNA-Gly isoacceptors. Intriguingly, tRNA fragments are scarce in the testis, but their levels increase in sperm during post-testicular maturation in the epididymis. We find that epididymosomes – extracellular vesicles which fuse with sperm during epididymal transit – exhibit RNA payloads closely matching those of mature sperm, and can deliver tRNA fragments to immature sperm in vitro both in mouse and in bull. Finally, we show that tRNA-Gly-GCC fragments play a role in repressing genes associated with the endogenous retroelement MERVL, both in ES cells and in preimplantation embryos. Our results shed light on small RNA biogenesis during post-testicular sperm maturation, and link tRNA fragments to regulation of endogenous retroelements active in the early embryo. Overall design: Zygotes were generated by IVF from animals fed a control diet. These embryos were then microinjected with various combinations of small RNAs and control RNA (HIS3.3::GFP). Follwoing injections the zygotes were developed and allowed to develop until 2 cell (2C) or 4 cell (4C) stage when single embryo RNA seq was carried out to study gene expression changes

Publication Title

Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP067085
Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals (ICSI)
  • organism-icon Mus musculus
  • sample-icon 103 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Parental dietary conditions can influence the metabolic traits of offspring. In mice, paternal consumption of low protein diet alters cholesterol and lipid metabolism of progeny. Here, we examine RNA species expressed in male reproductive tissues of mice. Protein restriction leads to altered levels of multiple small RNAs in mature sperm, as well as throughout the male reproductive tract, with decreased levels of let-7 family members and increased levels of 5’ fragments of tRNA-Gly isoacceptors. Intriguingly, tRNA fragments are scarce in the testis, but their levels increase in sperm during post-testicular maturation in the epididymis. We find that epididymosomes – extracellular vesicles which fuse with sperm during epididymal transit – exhibit RNA payloads closely matching those of mature sperm, and can deliver tRNA fragments to immature sperm in vitro both in mouse and in bull. Finally, we show that tRNA-Gly-GCC fragments play a role in repressing genes associated with the endogenous retroelement MERVL, both in ES cells and in preimplantation embryos. Our results shed light on small RNA biogenesis during post-testicular sperm maturation, and link tRNA fragments to regulation of endogenous retroelements active in the early embryo. Overall design: Zygotes were generated by ICSI from oocytes/females fed a Control diet and sperm/males fed either a Control or Low Protein diet. The sperm was isolated from either the Rete testis or the Cauda epididymis and injected either as a whole sperm or just the sperm head. Following fertilization by ICSI the zygotes developed for 28 hours (2C stage) and were harvested for single-embryo RNA-Seq.

Publication Title

Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE48369
Expression data of sleeping, waking, and sleep deprived in adult heterozygous Cnp eGFP-L10a mice
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Transcriptomic studies revealed that hundreds of mRNAs show differential expression in the brains of sleeping versus awake rats, mice, flies, and sparrows. Although these results have offered clues regarding the molecular consequences of sleep and sleep loss, their functional significance thus far has been limited. This is because the previous studies pooled transcripts from all brain cells, including neurons and glia.

Publication Title

Effects of sleep and wake on oligodendrocytes and their precursors.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE35206
Specific transcriptional response of four blockers of estrogen receptors on estradiol-modulated genes in the mouse mammary gland
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The efficacy and exceptionally good tolerance of estrogen blockade in the treatment of breast cancer is well recognized but novel agents are required, especially to take advantage of the multiple consecutive responses obtained in breast cancer progressing following previous hormone therapy, thus delaying the use of cytotoxic chemotherapy with its usually serious side effects. Acolbifene (ACOL) is a novel and unique antiestrogen completely free of estrogen-like activity in both the mammary gland and uterus while preventing bone loss. From the preclinical and clinical data so-far available, this new antiestrogen represents a unique opportunity for a highly potent and specific blockade of estrogen action in the mammary gland and uterus while exerting estrogen-like beneficial effects in other tissues (selective estrogen receptor modulator or SERM activity). In order to better understand the specificity of action of acolbifene, we have used Affymetrix GeneChips containing 45,000 probe sets to analyze 34,000 genes to determine the specificity of this compound compared to the pure antiestrogen fulvestrant, as well as the mixed antagonists/agonists tamoxifen and raloxifene to block the effect of estradiol (E2) and to induce effects of their own on gene expression in the mouse mammary gland. The genes modulated by E2 were those identified in two separate experiments and validated by quantitative real-time PCR (Q_RT-PCR). Three hours after the single subcutaneous injection of E2 (0.05 ug), the simultaneous administration of acolbifene, fulvestrant, tamoxifen and raloxifene blocked by 98%, 62%, 43% and 92% the number of E2-upregulated genes, respectively. On the other hand, 70%, 10%, 25% and 55% of the genes down-regulated by E2 were blocked by the same compounds. Acolbifene was also the compound which, when used alone, modulated the smallest number of genes also influenced by E2, namely 4%, thus possibly explaining the potent tumoricidal action of this compound in human breast cancer xenografts where 61% of tumors disappeared, thus bringing a new paradigm in the hormonal therapy of breast cancer.

Publication Title

Specific transcriptional response of four blockers of estrogen receptors on estradiol-modulated genes in the mouse mammary gland.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE67838
Identification of post-transcriptional regulatory networks during myeloblast-to-monocyte differentiation transition
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Identification of post-transcriptional regulatory networks during myeloblast-to-monocyte differentiation transition.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE67826
Identification of post-transcriptional regulatory networks during myeloblast-to-monocyte differentiation transition [mRNA]
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Treatment of leukemia cells with 1,25-dihydroxyvitamin D3 may overcome their differentiation block and lead to the transition from myeloblasts to monocytes. To identify microRNA-mRNA networks relevant for myeloid differentiation, we profiled the expression of mRNAs and microRNAs associated to the low- and high-density ribosomal fractions in leukemic cells and in their differentiated monocytic counterpart. Intersection between mRNAs shifted across the fractions after treatment with putative target genes of modulated microRNAs showed a series of molecular networks relevant for the monocyte cell fate determination

Publication Title

Identification of post-transcriptional regulatory networks during myeloblast-to-monocyte differentiation transition.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE6237
Fine temporal analysis of DHT transcriptional modulation of the ATM/Gadd45g signaling pathways in the mouse uterus.
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

In rodents, the uterus of a mature

Publication Title

Fine temporal analysis of DHT transcriptional modulation of the ATM/Gadd45g signaling pathways in the mouse uterus.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact