This SuperSeries is composed of the SubSeries listed below.
Sex and strain dependent differences in mucosal immunology and microbiota composition in mice.
Sex, Specimen part
View SamplesA dysbiosis in the intestinal microbiome plays a role in the pathogenesis of several immunological diseases. These diseases often show a gender bias, suggesting gender differences in immune responses and in the intestinal microbiome. We hypothesized that gender differences in immune responses are associated with gender differences in microbiota. We demonstrated mouse strain dependent gender differences in the intestinal microbiome. Interestingly, a cluster of colonic genes (related to humoral and cell-mediated immune responses) correlated oppositely with microbiota species abundant in B6 females and in BALB/c males. This suggests that with different genetic backgrounds, gender associated immune responses are differentially regulated by microbiota. The net result was the same, since both mouse strains showed similar gender induced differences in immune cell populations in the mesenteric lymph nodes. Therefore, host-microbe interactions might be more complicated than assumed, as bacterial-species adaptations might be highly dependent on the genetic make-up of the individual.
Sex and strain dependent differences in mucosal immunology and microbiota composition in mice.
Sex, Specimen part
View SamplesA dysbiosis in the intestinal microbiome plays a role in the pathogenesis of several immunological diseases. These diseases often show a gender bias, suggesting gender differences in immune responses and in the intestinal microbiome. We hypothesized that gender differences in immune responses are associated with gender differences in microbiota. We demonstrated mouse strain dependent gender differences in the intestinal microbiome. Interestingly, a cluster of colonic genes (related to humoral and cell-mediated immune responses) correlated oppositely with microbiota species abundant in B6 females and in BALB/c males. This suggests that with different genetic backgrounds, gender associated immune responses are differentially regulated by microbiota. The net result was the same, since both mouse strains showed similar gender induced differences in immune cell populations in the mesenteric lymph nodes. Therefore, host-microbe interactions might be more complicated than assumed, as bacterial-species adaptations might be highly dependent on the genetic make-up of the individual.
Sex and strain dependent differences in mucosal immunology and microbiota composition in mice.
Sex, Specimen part
View SamplesColorectal cancer risk is associated with diets high in red meat. Heme, the pigment of red meat, induces cytotoxicity of colonic contents and elicits epithelial damage and compensatory hyperproliferation, leading to hyperplasia. Here we explore the possible causal role of the gut microbiota in heme-induced hyperproliferation. To this end, mice were fed a purified control or heme diet (0.5 mol/g heme) with or without broad-spectrum antibiotics for 14 d. Heme-induced hyperproliferation was shown to depend on the presence of the gut microbiota, because hyperproliferation was completely eliminated by antibiotics, although heme-induced luminal cytotoxicity was sustained in these mice. Colon mucosa transcriptomics revealed that antibiotics block heme-induced differential expression of oncogenes, tumor suppressors, and cell turnover genes, implying that antibiotic treatment prevented the heme-dependent cytotoxic micelles to reach the epithelium. Our results indicate that this occurs because antibiotics reinforce the mucus barrier by eliminating sulfide-producing bacteria and mucin-degrading bacteria (e.g., Akkermansia). Sulfide potently reduces disulfide bonds and can drive mucin denaturation and microbial access to the mucus layer. This reduction results in formation of trisulfides that can be detected in vitro and in vivo. Therefore, trisulfides can serve as a novel marker of colonic mucolysis and thus as a proxy for mucus barrier reduction. In feces, antibiotics drastically decreased trisulfides but increased mucin polymers that can be lysed by sulfide. We conclude that the gut microbiota is required for heme-induced epithelial hyperproliferation and hyperplasia because of the capacity to reduce mucus barrier function.
Gut microbiota facilitates dietary heme-induced epithelial hyperproliferation by opening the mucus barrier in colon.
Sex, Age, Specimen part
View SamplesA mucus layer covers and protects the intestinal epithelial cells from direct contact with microbes. This mucus layer not only prevents inflammation but also plays an essential role in microbiota colonization, indicating the complex interplay between mucus composition-microbiota and intestinal health. However, it is unknown whether the mucus layer is influenced by age or sex and whether this contributes to reported differences in intestinal diseases in males and females or with ageing. Therefore, in this study we investigated the effect of age on mucus thickness, intestinal microbiota composition and immune composition in relation to sex. The ageing induced shrinkage of the colonic mucus layer was associated with bacterial penetration and direct contact of bacteria with the epithelium in both sexes. Additionally, several genes involved in the biosynthesis of mucus were downregulated in old mice, especially in males, and this was accompanied by a decrease in abundances of various Lactobacillus species and unclassified Clostridiales type IV and XIV and increase in abundance of the potential pathobiont Bacteroides vulgatus. The changes in mucus and microbiota in old mice were associated with enhanced activation of the immune system as illustrated by a higher percentage of effector T cells in old mice. Our data contribute to a better understanding of the interplay between mucus-microbiota-and immune responses and ultimately may lead to more tailored design of strategies to modulate mucus production in targeted groups.
The effect of age on the intestinal mucus thickness, microbiota composition and immunity in relation to sex in mice.
Sex, Age, Specimen part
View SamplesDiminished colonic health is associated with various age-related pathologies. In this study, we applied an integrative approach to reveal potential interactions between determinants of colonic health in aging C57BL/6J mice. Analysis of gut microbiota composition revealed an enrichment of various potential pathobionts, including Desulfovibrio spp., and a decline of the health-promoting Akkermansia spp. and Lactobacillus spp. during aging. Intraluminal concentrations of various metabolites varied between ages and we found evidence for an increased gut permeability at higher age. Colonic gene expression analysis suggested that during the early phase of aging (between 6 and 12 months), expression of genes involved in epithelial-to-mesenchymal transition and (re)organization of the extracellular matrix were increased. Differential expression of these genes was strongly correlated with Bifidobacterium spp. During the later phase of aging (between 12 and 28 months), gene expression profiles pointed towards a diminished antimicrobial defense and were correlated with an uncultured Gastranaerophilales spp. This study demonstrates that aging is associated with pronounced changes in gut microbiota composition and colonic gene expression. Furthermore, the strong correlations between specific bacterial genera and host gene expression may imply that orchestrated interactions take place in the vicinity of the colonic wall and potentially mediate colonic health during aging.
Integrative analysis of gut microbiota composition, host colonic gene expression and intraluminal metabolites in aging C57BL/6J mice.
Sex, Specimen part
View SamplesThe supply of soluble silicon (Si) to plants has been associated with many benefits that remain poorly explained and often contested. In this work, the effect of Si was studied on wheat plants under both control and pathogen stress (Blumeria graminis f.sp. tritici (Bgt)) conditions by conducting an exhaustive transcriptomic analysis (55,000 genes) aimed at comparing the differential response of plants under four treatments. The response to the supply of Si on control (uninfected) plants was limited to 47 genes providing little evidence of regulation of a specific metabolic process. Plants reacted to inoculation with Bgt by an up-regulation of many genes linked to stress and metabolic processes and a down-regulation of genes linked to photosynthesis. Supplying Si to inoculated plants largely prevented disease development, a phenotypic response that translated into a nearly perfect reversal of genes regulated by the effect of Bgt alone. These results suggest that Si plays a limited role on a plants metabolism in absence of stress, even in the case of a high-Si accumulating monocot such as wheat. On the other hand, the benefits of Si, in the form of biotic stress alleviation, were remarkably aligned with a counter-response to transcriptomic changes induced by the pathogen Bgt.
A comprehensive transcriptomic analysis of the effect of silicon on wheat plants under control and pathogen stress conditions.
No sample metadata fields
View SamplesAccording to the Canadian Food Inspection Agency and Health Canada, genetically modified crops are considered safe if they are substantially equivalent to a conventional crop in regards to agronomic, physiological and compositional characteristics. A recurring issue in safety assessment of genetically modified crops is the paucity of analytical methods to detect unintended or unexpected outcomes of genetic modification. Traditional targeted compound comparative analyses are limited in scope and capacity to detect unintended changes in chemical composition. This study explored the potential of using microarray technology to assess the substantial equivalence of gene expression profiles between genetically modified and conventional soybean cultivars. Different pre processing methods were applied to the raw expression data from the arrays, and clustering methods were used to try and differentiate the genetically modified cultivars from the conventional cultivars. Results showed that more variation existed between different strains of conventional cultivars than between conventional and genetically modified cultivars.
Effect of transgenes on global gene expression in soybean is within the natural range of variation of conventional cultivars.
No sample metadata fields
View SamplesWe have generated RNA-seq of ILC2 progenitors form WT bone marrow mice. Overall design: Sorted ILC2p from 8 week-old mice were analysed in RNA-seq. Each replicate is a pool of 8 mice.
Androgen signaling negatively controls group 2 innate lymphoid cells.
Specimen part, Cell line, Subject
View SamplesGroup 3 innate lymphoid cells (ILC3) are composed of NCR- and NCR+ subsets located at mucosal sites exposed to billions of commensal microbes and potentially harmful pathogens. Together with T cells, the various ILC3 subsets maintain the balance between homeostasis and immune activation. Using genetic mapping, we reveal here the existence of a new subset of NCR- ILC3 transiently expressing Ncr1 but strongly related to unlabeled NCR- ILC3, demonstrating previously unsuspected heterogeneity within the NCR- ILC3 population. Notch signaling is required for the differentiation of NCR- ILC3 into NCR+ ILC3. However, we show here that Notch signaling must be sustained for the maintenance of the NCR+ phenotype and that TGF-ß impairs the development of NCR+ ILC3. Thus, ILC3 diversity and the plasticity of the NCR- and NCR+ subsets is regulated by the balance between the opposing effects of Notch and TGF-ß signaling, maintaining homeostasis in the face of continual challenges. Overall design: Transcriptional profiling of three ILC subsets (NCR-FM-, NCR-FM- and NCR+FM+) using RNA sequencing
Transforming growth factor-β and Notch ligands act as opposing environmental cues in regulating the plasticity of type 3 innate lymphoid cells.
Specimen part, Cell line, Subject
View Samples