refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 827 results
Sort by

Filters

Technology

Platform

accession-icon SRP042228
Core Ileal Transcriptome in Pediatric Crohn Disease
  • organism-icon Homo sapiens
  • sample-icon 322 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

We report the global pattern of ileal gene expression in a cohort of 359 treatment-naïve pediatric Crohn Disease, Ulcerative Colitis patients and controls. We focus on genes with consistent altered expression in inflamed and unaffected ileum of CD [ileal-involved CD (iCD) and non-invloved ileal CD (cCD)], but not in the ileum of ulcerative colitis or control. Overall design: Ileal biopsies were obtained during diagnostic colonoscopies of children and adolescents aged less than 17 years, who presented with IBD-like symptoms. All patients underwent baseline colonoscopy and histological characterization; non-IBD controls were those with suspected IBD, but with no microscopic or macroscopic inflammation and normal radiographic, endoscopic, and histologic findings. Biopsies were stored at -80 degrees.

Publication Title

Defining the Celiac Disease Transcriptome using Clinical Pathology Specimens Reveals Biologic Pathways and Supports Diagnosis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP098939
Long ncRNA Landscape in the Ileum of Treatment Naïve Early Onset Crohn Disease
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Objective: Long non-coding RNAs (lncRNA) regulate gene transcription and diverse cellular functions. We previously defined a novel core inflammatory and metabolic ileal gene signature in treatment naïve pediatric Crohn Disease (CD), however, genome-wide characterization of lncRNA expression was lacking. We now extend our analyses to define a more comprehensive view that includes lncRNA. Design: Using RNAseq, we performed a systematic profiling of lncRNAs and protein-coding genes expression in 177 ileal biopsies. Co-expression analysis was used to identify functions and tissue-specific expression. RT-PCR was used to test lncRNAs regulation by IL-1ß in Caco-2 enterocytes model. Results: We characterize a widespread dysregulation of 459 lncRNA in the ileum of treatment naïve pediatric CD patients. Unsupervised and supervised classifications using the 459 lncRNA showed comparable patients' grouping as the 2160 dysregulated protein-coding genes, linking lncRNA to CD pathogenesis. Co-expression and functional annotation enrichment analyses across several tissues and cell types showed that the up-regulated LINC01272 is associated with a myeloid pro-inflammatory signature while the down-regulated HNF4A-AS1 exhibits association with an epithelial metabolic signature. We further validated expression and regulation of prioritized lncRNA upon IL-1ß exposure in differentiated Caco-2 cells. Finally, we identified significant correlations between LINC01272 and HNF4A-AS1 expression and more severe mucosal injury. Conclusion: We define differentially expressed lncRNA in the ileum of treatment naive pediatric CD. We show lncRNA utility to correctly classify disease or healthy states and demonstrate their regulation in response to an inflammatory signal. These lncRNA, after mechanistic exploration, may serve as potential new targets for RNA-based interventions. Overall design: Using RNAseq, we performed a systematic profiling of lncRNAs and protein-coding genes expression in 21 days differentiated caco-2 cells

Publication Title

Long ncRNA Landscape in the Ileum of Treatment-Naive Early-Onset Crohn Disease.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE38088
Expression data from human induced pluripotent stem cell-derived teratomas and embryoid bodies
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The tumorigenicity of human pluripotent stem cells (hPSCs) is a major safety concern for their application in regenerative medicine. Here we identify the tight-junction protein Claudin-6 as a specific cell surface marker of hPSCs that can be used to selectively remove Claudin-6-positive cells from mixed cultures. We show that Claudin-6 is absent in adult tissues but highly expressed in undifferentiated cells, where it is dispensable for hPSC survival and self-renewal. We use three different strategies to remove Claudin-6-positive cells from mixed populations: an antibody against Claudin-6; a cytotoxin-conjugated antibody that selectively targets undifferentiated cells; and clostridium perfringens enterotoxin, a toxin that binds several Claudins, including Claudin-6, and efficiently kills undifferentiated cells, thus eliminating the tumorigenic potential of hPSC-containing cultures. This work provides a proof of concept for the use of Claudin-6 to eliminate residual undifferentiated hPSCs from culture, highlighting a strategy that may increase the safety of hPSC-based cell therapies.

Publication Title

Immunologic and chemical targeting of the tight-junction protein Claudin-6 eliminates tumorigenic human pluripotent stem cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE57909
Expression data from human pluripotent stem cells treated with PluriSIn#2
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Pluripotent-specific inhibitors (PluriSIns) make a powerful tool for studying the mechanisms that control the survival of human pluripotent stem cells (hPSCs). Here we characterize PluriSIn#2 as a novel selective indirect inhibitor of topoisomerase II alpha (TOP2A). We find that TOP2A is uniquely expressed in undifferentiated hPSCs, and that its inhibition results in their rapid cell death. These findings reveal a dependency of hPSCs on the activity of TOP2A, which can be harnessed for their selective elimination from culture.

Publication Title

Brief reports: Controlling the survival of human pluripotent stem cells by small molecule-based targeting of topoisomerase II alpha.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE93188
Transcriptomic fingerprints of C. elegans exposed to citrate coated superparamagnetic iron oxide nanoparticles (C-SPIONs) and to superparamagnetic iron oxide nanoparticles coated with a monolayer of bovine serum albumin (BSA-SPIONs)
  • organism-icon Caenorhabditis elegans
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Gene 1.0 ST Array (elegene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Toxicogenomics of iron oxide nanoparticles in the nematode C. elegans.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE93187
Transcriptomic fingerprints of C. elegans exposed to citrate coated superparamagnetic iron oxide nanoparticles (C-SPIONs)
  • organism-icon Caenorhabditis elegans
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Gene 1.0 ST Array (elegene10st)

Description

Superparamagnetic Iron Oxide Nanoparticles (SPIONs) are currently being investigated for a range of biomedical applications. Their use have been related with different cytotoxic mechanisms including the generation of oxidative stress and the induction of metal detoxification pathways, among others. We have investigated the molecular mechanisms responsive to in-house fabricated citrate coated SPIONs (C-SPIONs) in the nematode C. elegans to compare in vivo findings with previous in vitro studies. C-SPIONs (500 g/ml) affected the transcriptional response of signal transduction cascades (i.e. TFG-beta), protein processing in the endoplasmic reticulum, and RNA transport, among other biological processes. They also triggered a lysosomal response, indicating a relevant biological role of this cellular compartment in the response to this nanoparticle treatment in C. elegans. Interestingly, other pathways frequently linked to nanotoxicity like oxidative stress or apoptosis were not identified as significantly affected in this genome-wide in vivo study despite the high dose of exposure.

Publication Title

Toxicogenomics of iron oxide nanoparticles in the nematode C. elegans.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE93186
Transcriptomic fingerprints of C. elegans exposed to superparamagnetic iron oxide nanoparticles coated with a monolayer of bovine serum albumin (BSA-SPIONs)
  • organism-icon Caenorhabditis elegans
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Gene 1.0 ST Array (elegene10st)

Description

Superparamagnetic Iron Oxide Nanoparticles (SPIONs) are currently being investigated for a range of biomedical applications. Their use have been related with different cytotoxic mechanisms including the generation of oxidative stress and the induction of metal detoxification pathways, among others. Different NP coatings are being explored, among them albumin which has been applied in some drugs delivery systems. We have investigated the molecular mechanisms responsive to in-house fabricated SPIONs coated with bovine serum albumin (BSA-SPIONs) in the nematode C. elegans to compare in vivo findings with previous in vitro studies. BSA-SPIONs (500 g/ml) affected the transcriptional response of glycan metabolic pathways related to innate immune response, xenobiotics degradation, and triggered a lysosomal response, indicating a relevant biological role of this cellular compartment in the response to this nanoparticle treatment in C. elegans. Remarkably, key biological functions such as apoptosis or protein processing were not affected with significance despite the high dose of exposure.

Publication Title

Toxicogenomics of iron oxide nanoparticles in the nematode C. elegans.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE19083
Microarray analysis of mediastinal lymph node of pigs naturally affected by postweaning multisystemic wasting syndrome
  • organism-icon Sus scrofa
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Porcine Genome Array (porcine)

Description

Postweaning multisystemic wasting syndrome (PMWS) is one of the pig diseases with major economic impact worldwide. Clinical, pathologic and some immunologic aspects of this disease are well-known, but the molecular mechanisms underlying pathogenic mechanisms of the disease are still poorly understood. The objective of the present study was to investigate the global changes in gene expression in the mediastinal lymph nodes from pigs naturally affected by PMWS and healthy counterparts, using the Affymetrix Porcine Genechip. This is the first study on gene expression in pigs naturally affected by PMWS. The present results allowed identifying potential mechanisms underlying the inflammation, lymphocyte depletion in lymphoid tissues and immune suppression, which are key features of PMWS.

Publication Title

Microarray analysis of mediastinal lymph node of pigs naturally affected by postweaning multisystemic wasting syndrome.

Sample Metadata Fields

Age, Specimen part, Disease, Disease stage

View Samples
accession-icon GSE31774
Effect of loss of function of Gal11/Med15 and Med3 from the Mediator tail module in budding yeast
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Gene expression was compared for wild type yeast (BY4741) and yeast lacking Gal11/Med15 and Med3, or from a gal11-myc med3 strain. The gal11-myc allele shows a partial loss of function when combined with med3. Expression was analyzed for yeast grown in YPD as well as in CSM.

Publication Title

Distinct role of Mediator tail module in regulation of SAGA-dependent, TATA-containing genes in yeast.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE12817
Cluster analysis of rat pancreatic islet gene mRNA levels after culture in low, intermediate and high [glucose]
  • organism-icon Rattus norvegicus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Background: Survival and function of insulin-secreting pancreatic -cells are markedly altered by changes in nutrient availability. In vitro, culture in 10 rather than 2mM glucose improves rodent -cell survival and function whereas glucose concentrations above 10mM are deleterious. Aim-Method: To identify the mechanisms of such -cell plasticity, we tested the effects of a 18h culture at 2, 5, 10 and 30mM glucose on the transcriptome of rat islets precultured for 1 week at 10mM glucose (Affymetrix Rat 230.2 arrays). Results: Culture in either 2-5mM or 30mM instead of 10mM glucose markedly impaired -cell function without affecting islet cell survival. Of ~16000 probe sets reliably detected in islets, ~5000 were significantly regulated at least 1.4-fold by glucose. Analysis of these probe sets with GeneCluster software identified 10 mRNA profiles with unidirectional up- or down-regulation between 2 and 10, 2 and 30, 5 and 10, 5 and 30 or 10 and 30 mM glucose, and 8 complex V-shaped or inverse V-shaped profiles with a nadir or peak level of expression in 5 or 10mM glucose. Analysis of genes belonging to these various clusters with Onto-express and GenMapp software revealed several signaling and metabolic pathways that may contribute to the induction of -cell dysfunction and apoptosis after culture in low or high vs. intermediate glucose concentration. Conclusion: We have identified 18 distinct mRNA profiles of glucose-induced changes in islet gene mRNA levels that should help understanding the mechanisms by which glucose affects -cell survival and function under states of chronic hypo- or hyperglycemia.

Publication Title

Cluster analysis of rat pancreatic islet gene mRNA levels after culture in low-, intermediate- and high-glucose concentrations.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact