refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 827 results
Sort by

Filters

Technology

Platform

accession-icon GSE14067
Kidney transplantation
  • organism-icon Homo sapiens
  • sample-icon 72 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In this study, we examined transcriptional profiles from 3 different microarray platforms, across 103 peripheral blood samples with and without acute rejection, to find a critical gene-set for the diagnosis of acute renal rejection that matched biopsy diagnosis, irrespective of patient demographics, clinical confounders, concomitant infection, immunosuppression usage or sample processing methods. We hypothesized that changes in peripheral blood expression profiles correlate with biopsy-proven rejection, and that these changes could be used as biomarkers for the diagnosis and prediction of acute rejection.

Publication Title

A peripheral blood diagnostic test for acute rejection in renal transplantation.

Sample Metadata Fields

Disease, Disease stage

View Samples
accession-icon GSE14346
Kidney transplantation (Affymetrix set)
  • organism-icon Homo sapiens
  • sample-icon 72 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In this study, we examined transcriptional profiles from 3 different microarray platforms, across 103 peripheral blood samples with and without acute rejection, to find a critical gene-set for the diagnosis of acute renal rejection that matched biopsy diagnosis, irrespective of patient demographics, clinical confounders, concomitant infection, immunosuppression usage or sample processing methods. We hypothesized that changes in peripheral blood expression profiles correlate with biopsy-proven rejection, and that these changes could be used as biomarkers for the diagnosis and prediction of acute rejection.

Publication Title

A peripheral blood diagnostic test for acute rejection in renal transplantation.

Sample Metadata Fields

Disease, Disease stage

View Samples
accession-icon GSE21876
Transcriptional regulation of ROS controls the transition from proliferation to differentiation in the root
  • organism-icon Arabidopsis thaliana
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

We isolated the meristematic and elongation zones of Col-0, upb1-1 mutant and 35S::UPB1-3YFP/upb1-1 plants by micro-dissection and extracted RNA from each section independently.

Publication Title

Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE21582
Expression analysis of pye-1 mutants and root pericycle cells to iron sufficient or iron deficient conditions
  • organism-icon Arabidopsis thaliana
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE21443
Expression analysis of the response to wild-type and pye-1 mutants to iron sufficient or iron deficient conditions
  • organism-icon Arabidopsis thaliana
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Transcriptional profile of whole roots of wild-type and pye-1 mutants exposed to 24 hours -Fe were generated

Publication Title

The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE16468
Transcriptional and posttranscriptional regulation of transcription factor expression in Arabidopsis roots.
  • organism-icon Arabidopsis thaliana
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Understanding how the expression of transcription factor (TF) genes is modulated is essential for reconstructing gene regulatory networks. There is increasing evidence that sequences other than upstream noncoding can contribute to modulating gene expression, but how frequently they do so remains unclear. Here, we investigated the regulation of TFs expressed in a tissue-enriched manner in Arabidopsis roots. For 61 TFs, we created GFP reporter constructs driven by each TF's upstream noncoding sequence (including the 5'UTR) fused to the GFP reporter gene alone or together with the TF's coding sequence. We compared the visually detectable GFP patterns with endogenous mRNA expression patterns, as defined by a genome-wide microarray root expression map.

Publication Title

Transcriptional and posttranscriptional regulation of transcription factor expression in Arabidopsis roots.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE21553
Expression analysis of root pericycle cell-types after iron deficiency (-Fe) treatment
  • organism-icon Arabidopsis thaliana
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Pericycle specific transcriptional profiles were generated by FACS (Fluorescence Activated Cell Sorting) of roots that express a pericycle-specific GFP-reporter. FACS cell populations were isolated from roots grown under standard conditions or roots that had been transferred to -Fe media for 24 hours.

Publication Title

The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE30166
Cell-type, developmental stage, and whole root responses to low pH and sulfur deficiency
  • organism-icon Arabidopsis thaliana
  • sample-icon 78 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Cell identity regulators link development and stress responses in the Arabidopsis root.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
accession-icon GSE21611
Oscillating gene expression determines competence for periodic branching in the Arabidopsis root
  • organism-icon Arabidopsis thaliana
  • sample-icon 39 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

The Oscillation Zone (OZ) of unsynchronized roots was disected and divided into an upper (OZ2) and lower (OZ1) half .

Publication Title

Oscillating gene expression determines competence for periodic Arabidopsis root branching.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE30095
Expression analysis of root cell types after treatment with low pH
  • organism-icon Arabidopsis thaliana
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Cell-type specific transcriptional profiles were generated by FACS (Fluorescence Activated Cell Sorting) sorting of roots that express cell-type specific GFP-reporters. Five different GFP-reporter lines were used. FACS cell populations were isolated from roots grown under standard pH (pH 5.7) or roots that had been transfered to low pH (pH 4.6) media for 24 hours.

Publication Title

Cell identity regulators link development and stress responses in the Arabidopsis root.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact