refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1191 results
Sort by

Filters

Technology

Platform

accession-icon GSE12886
Effect of the silencing of WT1 expression on HCC transcriptome
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The Wilms tumor 1 gene (WT1) encodes a transcription factor involved in cell growth and development. As we previously reported WT1 expression is hardly detectable in normal hepatic tissue but is induced in liver cirrhosis. Although WT1 has been found to be overexpressed in a number of malignancies, the role of WT1 in hepatocarcinogenesis has not been clarified. We found that WT1 is expressed in several human hepatocellular carcinoma (HCC) cell lines including PLC/PRF/5 and HepG2, and in HCC tumor tissue in 42% of patients. WT1 small interfering RNAs did not affect proliferation rate of HCC cells but abrogated their resistance to anoikis. Transcriptome analysis of PLC/PRF/5 cells after WT1 knockdown demonstrated upregulation of 251 genes and downregulation of 321. Ninety per cent of the former corresponded to metabolic genes mostly those characterizing the mature hepatocyte phenotype. On the contrary, genes that decreased upon WT1 inhibition were mainly related to defense against apoptosis, cell cycle and tumor progression. In agreement with these findings WT1 expression increased the resistance of liver tumor cells to doxorubicin, a compound used to treat HCC. Interestingly, doxorubicin strongly enhanced WT1 expression in both HCC cells and normal human hepatocytes. Among different chemotherapeutics, induction of WT1 transcription was restricted to topoisomerase 2 inhibitors. When WT1 expression was prohibited doxorubicin caused a marked increase in caspase-3 activation. In conclusion, WT1 is expressed in a substantial proportion of HCC contributing to tumor progression and resistance to chemotherapy, suggesting that WT1 may be an important target for HCC treatment.

Publication Title

Wilms' tumor 1 gene expression in hepatocellular carcinoma promotes cell dedifferentiation and resistance to chemotherapy.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP069966
Gene expression analysis of mouse liver after bile duct ligation (BDL) treated or not with anti-miR-873
  • organism-icon Mus musculus
  • sample-icon 52 Downloadable Samples
  • Technology Badge IconIllumina HiScanSQ

Description

Background & Aims. Glycine N-methyltransferase (GNMT) is an essential regulator of the total transmethylation flux in the mammalian liver. Distinct DNA methylation patterns are characteristic of liver development, hepatic de-differentiation and liver disease progression, processes in which the levels of GNMT decrease dramatically by mechanisms still poorly understood. Interestingly, putative binding sites for the microRNA miRNA-873-5p were identified in the 3´UTR of GNMT suggesting a potential role for miRNA-873-5p in GNMT regulation. Results. We have identified that the hepatic expression of miRNA-873-5p was increased in a cohort of cirrhotic and liver cancer patients associated with a down-regulation of GNMT levels. Moreover, during liver development, hepatic de-differentiation and fibrosis, the elevation of miRNA-873-5p coincided with the reduction of GNMT expression, indicating that miRNA-873-5p specifically targets the expression of GNMT. Under these circumstances, inhibition of miRNA-873-5p induced GNMT levels and decreased global CpG methylation and transmethylation flux. Indeed, reestablishment of GNMT expression by miRNA-873-5p inhibition reduced hepatocyte de-differentiation, and abolished completely the mortality produced after bile duct ligation as a result of decreased proinflamatory and profibrogenic markers. miRNA-873-5p knockdown-mediated antifibrotic effect was significantly blunted if its effect on GNMT was blocked. Conclusion. Taken together, our studies highlight the role of miRNA-873-5p as a key regulator of GNMT expression, paving the way for new therapeutical approaches in liver de-differentiation and fibrosis. Overall design: Genome-wide changes in gene Expression in mouse livers from BDL treated or not with anti-miR-873 were generated by RNAseq.

Publication Title

MiR-873-5p acts as an epigenetic regulator in early stages of liver fibrosis and cirrhosis.

Sample Metadata Fields

Age, Cell line, Treatment, Subject

View Samples
accession-icon GSE58749
Human proliferating and differentiating keratinocytes treated with retinoic acid or 3,4-didehydroretinoic acid
  • organism-icon Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.1 ST Array (hugene21st)

Description

Targets of Retinoic Acid (RA) and 3,4-didehydroretinoic acid (ddRA) were identified in primary human epidermal keratinocytes grown in the presence of atRA or ddRA for 4 and 24 hours.

Publication Title

The effect of two endogenous retinoids on the mRNA expression profile in human primary keratinocytes, focusing on genes causing autosomal recessive congenital ichthyosis.

Sample Metadata Fields

Treatment

View Samples
accession-icon SRP049069
A spinal opsin controls early neural activity and drives a behavioral light response
  • organism-icon Danio rerio
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Purpose: using RNA-seq as a screening tool to determine candidate genes of interest within a genetically defined neural subpopulation in the zebrafish embryonic spinal cord. Results: The early embryonic spinal cord displays patterns of spontaneous activity that generate the earliest motor behavior in the zebrafish. We show the behavior and the neural activity to be inhibited by environmental levels of light. Since at these young ages the fish is blind, and since restricted illumination patterns on the trunk of the fish can elicit a photo-response, we hypothesized that the photo-inhibition is an intrinsic property of the active central pattern generator network within the spinal cord. We FACS-isolated cells from this network as well as those from a panneuronal population and sequenced mRNAs. Through differential expression analysis we identified vertebrate ancient long opsin a as a candidate and then further validated its function in the circuit through knockdown and rescue experiments. Overall design: RNA sequencing of 2 FACS purified neural populations from zebrafish spinal cord.

Publication Title

A spinal opsin controls early neural activity and drives a behavioral light response.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE54090
Slu7 is essential for liver differentiation, metabolism and quiescence
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [probe set (exon) version (huex10st)

Description

The equilibrium between cellular differentiation and proliferation is fundamental for tissue homeostasis. This is particularly important for the liver, a highly differentiated organ with systemic metabolic functions still endowed with unparalleled regenerative potential. Hepatocellular de-differentiation and uncontrolled proliferation are at the basis of liver carcinogenesis. We have identified SLU7, a pre-mRNA splicing regulator inhibited in hepatocarcinoma as a pivotal gene for hepatocellular homeostasis. SLU7 knockdown in human liver cells and mouse liver resulted in profound changes in pre-mRNA splicing and gene expression, leading to impaired glucose and lipid metabolism, refractoriness to key metabolic hormones, and reversion to a fetal-like gene expression pattern. Hepatocellular proliferation and a switch to a tumor-like glycolytic phenotype were also observed. Mechanistically, SLU7 governed the splicing and/or expression of essential genes for hepatocellular differentiation like SRSF3 and HNF4a, and was identified as a critical factor in cAMP-regulated gene transcription. SLU7 is therefore central for hepatocyte identity and quiescence.

Publication Title

Splicing regulator SLU7 is essential for maintaining liver homeostasis.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE39553
Young and old HSCs from WT and Lnk-/- mice
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The adaptor protein Lnk is an important negative regulator of HSC homeostasis and self-renewal. This study aims to investigate the role of Lnk in HSC aging. Here we performed expression profiling of bone marrow CD150+CD48-LSK LT-HSCs from young and old WT and Lnk-/- mice. Results identify select Lnk-mediated pathways with potential involvement in HSC self-renewal and aging.

Publication Title

Lnk deficiency partially mitigates hematopoietic stem cell aging.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE2600
Anaplasma phagocytophilum infected NB4 cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

THREE INDEPENDENT REPLICATES AND ARE THE CONTROL NON-INFECTED CELLS:

Publication Title

Modulation of NB4 promyelocytic leukemic cell machinery by Anaplasma phagocytophilum.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE12086
Search for recessive retinitis pigmentosa genes using RNA expression analysis in lymphoblasts
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Recessive retinitis pigmentosa (RP) is often caused by nonsense mutations that lead to low mRNA levels as a result of nonsense-mediated decay. Some RP genes are expressed at detectable levels in leukocytes as well as in the retina. We designed a microarray-based method to find recessive RP genes based on low lymphoblast mRNA expression levels

Publication Title

Insights from retinitis pigmentosa into the roles of isocitrate dehydrogenases in the Krebs cycle.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE84733
FGFR3 knock-down
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2), Affymetrix Human Exon 1.0 ST Array [CDF: Brainarray Version 12.1.0 (huex10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

An FGFR3/MYC positive feedback loop provides new opportunities for targeted therapies in bladder cancers.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE79184
CCL4 Secretion By Interleukin-15 Dendritic Cells Directs Superior Recruitment Of Cd56+ Cytolytic Lymphocytes
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

A key requisite for the success of a dendritic cell (DC)-based vaccine in treating malignancies is the capacity of the DCs to attract immune effector cells for further interaction and activation, considering crosstalk with DCs is partially regulated by cell-contact-dependent mechanisms. Although critical for therapeutic efficacy, immune cell recruitment is a largely overlooked aspect regarding optimization of DC therapy. In this paper we examine if the so-called interleukin (IL)-15 DC vaccine provides a favorable chemokine milieu for recruiting T cells, natural killer (NK) cells and gamma delta () T cells, in comparison with the IL-4 DCs used routinely for clinical studies, as well as the underlying mechanisms of immune cell attraction by IL-15 DCs. Chemokine signaling is studied both at the RNA level, using microarray data of mature DCs, and functional level, by means of a transwell chemotaxis assay. Important to note, the classic IL-4 DC vaccine falls short to attract the required immune effector lymphocytes, whereas the IL-15 DCs provide a favorable chemokine milieu for recruiting all cytolytic effector cells. The elevated secretion of the chemokine (C-C motif) ligand 4 (CCL4), also known as macrophage inflammatory protein-1 (MIP-1), by IL-15 DCs underlies the enhanced migratory responsiveness of T cells, NK cells and T cells. Namely, neutralizing its receptor CCR5 resulted in a significant drop in migration of the aforementioned effector cells towards IL-15 DCs. These findings should be kept in mind in the design of future DC-based cancer vaccines.

Publication Title

Desirable cytolytic immune effector cell recruitment by interleukin-15 dendritic cells.

Sample Metadata Fields

Specimen part, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact