Mutations involving the NFKB pathway are present in at least 17% of multiple myeloma (MM) tumors and 40% of MM cell lines (MMCL). These mutations, which are thought to be progression events, enable MM tumors to become less dependent on extrinsic bone marrow signals that activate NFKB. Studies on a panel of 50 MMCL provide some clarification of the mechanisms through which these mutations act and the significance of classical vs alternative activation of NFKB. First, only one mutation (NFKB2) selectively activates the alternative pathway, whereas several mutations (CYLD, NFKB1, TACI) selectively activate the classical pathway. However, most mutations affecting NIK level (NIK, TRAF2, TRAF3, cIAP1&2, CD40) activate the alternative but often both pathways. Second, we confirm the critical role of TRAF2 in regulating NIK degradation, whereas TRAF3 enhances but is not essential for cIAP1/2-mediated proteosomal degradation of NIK in MM.
Classical and/or alternative NF-kappaB pathway activation in multiple myeloma.
Cell line
View SamplesMolecular pathways activated in MALT lymphoma are not well defined.
Gene expression profiling of pulmonary mucosa-associated lymphoid tissue lymphoma identifies new biologic insights with potential diagnostic and therapeutic applications.
Sex
View SamplesEctopic Myc Expression in P493-6 B-cells at three levels:
Induction of ectopic Myc target gene JAG2 augments hypoxic growth and tumorigenesis in a human B-cell model.
Specimen part, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Cereblon expression is required for the antimyeloma activity of lenalidomide and pomalidomide.
Cell line
View SamplesThe precise molecular mechanism of action and targets through which thalidomide and related immunomodulatory drugs (IMiDs) exert their anti-tumor effects remains unclear. We investigated the role of cereblon (CRBN), a primary teratogenic target of thalidomide, in the anti-myeloma activity of IMiDs. CRBN depletion is initially cytotoxic to human myeloma cells but surviving cells with stable CRBN depletion become highly resistant to both lenalidomide and pomalidomide, but not to the unrelated drugs bortezomib, dexamethasone and melphalan. Acquired deletion of CRBN was found to be the primary genetic event differentiating isogenic MM1.S cell lines cultured to be sensitive or resistant to lenalidomide and pomalidomide. Gene expression changes induced by lenalidomide were dramatically suppressed in the presence of CRBN depletion further demonstrating that CRBN is required for lenalidomide activity. Downstream targets of CRBN include interferon regulatory factor 4 (IRF4) previously reported to also be a target of lenalidomide. Patients exposed to and putatively resistant to lenalidomide had lower CRBN levels in paired samples before and after therapy. In summary, CRBN is an essential requirement for IMiD activity, and a possible biomarker for the clinical assessment of anti-myeloma efficacy.
Cereblon expression is required for the antimyeloma activity of lenalidomide and pomalidomide.
Cell line
View SamplesWe report the RNA sequencing of the non-tumoral CD138- fractions of 74 MM patient BM aspirates taken at the time of diagnosis. Overall design: The sequencing of total RNA from the non-tumoral CD138- fractions of 74 MM patient BM aspirates was performed using TruSeq Stranded mRNA Sample Preparation kit on a NextSeq 500 Illumina sequencing platform (Illumina) by 5 successive runs using NextSeq 500 High Output kit v2 (Illumina) generating in average 20 million pairs of reads per sample.
Dysregulated IL-18 Is a Key Driver of Immunosuppression and a Possible Therapeutic Target in the Multiple Myeloma Microenvironment.
Specimen part, Disease, Disease stage, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Clonal competition with alternating dominance in multiple myeloma.
Specimen part
View SamplesCopy number and expression profiling of multiple myeloma patients at multiple stages of their individual clinical course
Clonal competition with alternating dominance in multiple myeloma.
Specimen part
View SamplesThe aims of this study were to assess the feasibility of prospective pharmacogenomics research in multicenter international clinical trials of bortezomib in multiple myeloma and to develop predictive classifiers of response and survival with bortezomib. Patients with relapsed myeloma enrolled in phase 2 and phase 3 clinical trials of bortezomib and consented to genomic analyses of pretreatment tumor samples. Bone marrow aspirates were subject to a negative-selection procedure to enrich for tumor cells, and these samples were used for gene expression profiling using DNA microarrays. Data quality and correlations with trial outcomes were assessed by multiple groups. Gene expression in this dataset was consistent with data published from a single-center study of newly diagnosed multiple myeloma. Response and survival classifiers were developed and shown to be significantly associated with outcome via testing on independent data. The survival classifier improved on the risk stratification provided by the International Staging System. Predictive models and biologic correlates of response show some specificity for bortezomib rather than dexamethasone. Informative gene expression data and genomic classifiers that predict clinical outcome can be derived from prospective clinical trials of new anticancer agents.
Gene expression profiling and correlation with outcome in clinical trials of the proteasome inhibitor bortezomib.
No sample metadata fields
View SamplesMultiple myeloma is a relatively common B-cell malignancy that is currently incurable. Certain recurrent genetic abnormalities characteristics of different genetic subtypes have been described. Hyperdiploid myeloma characterized by recurrent trisomies is the most common genetic subtypes. However little is know about it's biology. Another common genetic abnormality is chromosome 13 deletion which is also associated with inferior prognosis. This abnormality is already present at the pre-malignant MGUS stage and is clonally selected with disease progression. Although it is biologically and clinically important the molecular consequence of chromosome 13 deletion is unknown.
Molecular dissection of hyperdiploid multiple myeloma by gene expression profiling.
No sample metadata fields
View Samples