To address the functional role of KDM6A in the regulation of Rhox genes, male and female mouse ES cells were transfected with a mixture of three small interfering RNA duplexes, each of which targets a different region of Kdm6a mRNA. We found that Kdm6a knockdown in mouse ES cells caused a decrease in expression of a subset of Rhox genes, Rhox6 and 9. Furthermore, Rhox6 and 9 expression was decreased in female ES cells but not male ES cells indicating that KDM6A regulates Rhox gene expression in a sexually dimorphic manner.
Female bias in Rhox6 and 9 regulation by the histone demethylase KDM6A.
Specimen part, Cell line
View SamplesTo address the functional role of MOF in mammalian X upregulation, male and female mouse ES cells were transfected with a mixture of three small interfering RNA duplexes, each of which targets a different region of Mof mRNA. We found that MOF knockdown in mouse ES cells caused a greater drop in expression of X-linked genes compared to autosomal genes, as measured by expression array analyses. The strongest effect was observed on medium-expressed X-linked genes.
Mammalian X upregulation is associated with enhanced transcription initiation, RNA half-life, and MOF-mediated H4K16 acetylation.
Specimen part, Treatment
View SamplesAffymetrix 430 2.0 mouse arrays were used for expression analyses in undifferentiated and differentiated PGK12.1 ES cells. We found that the X:autosome expression ratios calculated from the mean expression values of X-linked and autosomal genes from microarrays was ~1.4 in undifferentiated female ES cells and then decreased to 1.2 in PGK12.1 cells after 15-day embryoid body differentiation. Thus, a substantial level of X upregulation is already evident in these ES cells prior to differentiation.
Mammalian X upregulation is associated with enhanced transcription initiation, RNA half-life, and MOF-mediated H4K16 acetylation.
Specimen part
View SamplesMany animal species employ a chromosome-based mechanism of sex determination, which has led to coordinate evolution of dosage compensation systems. Dosage compensation not only corrects the imbalance in the number of X-chromosomes between the sexes, but is also hypothesized to correct dosage imbalance within cells due to mono-allelic X expression and bi-allelic autosomal expression, by upregulating X-linked genes (termed â??Ohnoâ??s hypothesisâ??). Although this hypothesis is well supported by expression analyses of individual X-linked genes and by array-based transcriptome analyses, a recent study claimed that no such X upregulation exists in mammals and C. elegans based on RNA-sequencing and proteomics analyses. We provide RNA-seq RNA-seq analysis of mouse female PGK12.1 ES cells with two active X chromosomes and confirmed that the X chromosome is upregulated, consistent with the previous microarray study. Overall design: Examination of expression of X-linked and autosomal genes in mouse female ES cells with two active X chromosomes.
Bipartite structure of the inactive mouse X chromosome.
Sex, Cell line, Subject
View SamplesPurpose: using RNA-seq as a screening tool to determine candidate genes of interest within a genetically defined neural subpopulation in the zebrafish embryonic spinal cord. Results: The early embryonic spinal cord displays patterns of spontaneous activity that generate the earliest motor behavior in the zebrafish. We show the behavior and the neural activity to be inhibited by environmental levels of light. Since at these young ages the fish is blind, and since restricted illumination patterns on the trunk of the fish can elicit a photo-response, we hypothesized that the photo-inhibition is an intrinsic property of the active central pattern generator network within the spinal cord. We FACS-isolated cells from this network as well as those from a panneuronal population and sequenced mRNAs. Through differential expression analysis we identified vertebrate ancient long opsin a as a candidate and then further validated its function in the circuit through knockdown and rescue experiments. Overall design: RNA sequencing of 2 FACS purified neural populations from zebrafish spinal cord.
A spinal opsin controls early neural activity and drives a behavioral light response.
No sample metadata fields
View SamplesTHREE INDEPENDENT REPLICATES AND ARE THE CONTROL NON-INFECTED CELLS:
Modulation of NB4 promyelocytic leukemic cell machinery by Anaplasma phagocytophilum.
No sample metadata fields
View SamplesCD4+ T cell differentiation into multiple T helper lineages is critical for optimal adaptive immune responses. This report identified a novel intrinsic mechanism by which PD-1 signaling imparted regulatory phenotype to FoxP3+ Th1 cells (denoted as Tbet+iTregPDL1 cells) and iTregs. Tbet+iTregPDL1 cells were capable of preventing inflammation in murine models of experimental colitis and experimental graft versus host disease. PDL-1 binding to PD-1 imparted regulatory function to Tbet+iTregPDL1 cells and iTregs by specifically downregulating an endolysosomal protease asparaginyl endopeptidase (AEP)
PD-1 Inhibitory Receptor Downregulates Asparaginyl Endopeptidase and Maintains Foxp3 Transcription Factor Stability in Induced Regulatory T Cells.
Specimen part
View SamplesCardiac hypertrophy is regulated by the zinc finger-containing DNA binding factors Gata4 and Gata6, both of which are required to mount a productive growth response of the adult heart. To determine if Gata4 and Gata6 are redundant or have non-overlapping roles, we performed cardiomyocyte-specific conditional gene deletions for Gata4 and Gata6 in conjunction with reciprocal replacement with a transgene encoding either Gata4 or Gata6, during the pressure overload response. We determined that Gata4 and Gata6 play a redundant and dosage-sensitive role in programming the hypertrophic growth response itself following pressure overload stimulation. However, non-redundant functions were identified as functional decompensation induced by either Gata4 or Gata6 deletion was not rescued by the reciprocal transgene, and only Gata4 heart-specific deletion produced a reduction in capillary density after pressure overload. Gene expression profiling from hearts of these gene-deleted mice showed both overlapping and unique transcriptional codes, with Gata4 exhibiting the strongest impact. These results indicate that Gata4 and Gata6 play a dosage-dependent and semi-redundant role in programming cardiac hypertrophy, but that each has a unique role in maintaining cardiac homeostasis and adaptation to injury that cannot be compensated by the other.
Parsing the roles of the transcription factors GATA-4 and GATA-6 in the adult cardiac hypertrophic response.
Age, Specimen part
View SamplesSerine 105 phosphorylation of GATA4 is necessary for stress-induced cardiac hypertrophy in vivo.
Serine 105 phosphorylation of transcription factor GATA4 is necessary for stress-induced cardiac hypertrophy in vivo.
Age, Specimen part
View SamplesOxidized phospoholipids are a pro-inflammatory component of minimally modified lipoproteins that get trapped in the subendothelial space of atherosclerotic plaques of large arteries. To model the response of endothelial cells in a pro-atherosclerotic enviroment we measured the expression in primary endothelial cells with and without treatment with oxidized phsopolipids from 96 genetically identical donors of anonymous origin.
Systems genetics analysis of gene-by-environment interactions in human cells.
Sex, Subject
View Samples