Plasmablastic lymphoma is a high grade B cell lymphoma with plasmablastic morphology and a terminally differentiated B cell immunophenotype, usually arising in the setting of immunodeficiency and often demonstrating Epstein Barr Virus positivity. The molecular and genetic mechanisms underlying the pathogenesis of PBL are largely unknown. To better understand its pathogenesis, herein we have analyzed global gene expression of PBL and compared that to gene expression profiles of diffuse large B cell lymphoma. While overlaps in transcriptomes between these malignancies were identified, we have shown that the gene expression profile of plasmablastic lymphoma is distinct, demonstrating striking downregulation of B cell receptor signaling genes, BCL6, BCL11A SPI-B, targets of NFKB1, and upregulation of mitochondrial genes, PRMT5, MYC and MYC targets and IL21, implicating these alterations in the pathogenesis of this lymphoma. In addition we show the usefulness of SWAP-70 immunohistochemistry in the differentiation of immunoblastic diffuse large B cell lymphoma and plasmablastic lymphoma. Our findings provide justification for considering plasmablastic lymphoma as a specific lymphoma entity and provide insight into the unique transcriptional aberrations occurring in this high-grade lymphoma.
Gene expression analysis of plasmablastic lymphoma identifies downregulation of B-cell receptor signaling and additional unique transcriptional programs.
Specimen part
View SamplesEnzalutamide (formerly MDV3100 and available commercially as Xtandi), a novel androgen receptor (AR) signaling inhibitor, blocks the growth of castration-resistant prostate cancer (CRPC) in cellular model systems and was shown in a clinical study to increase survival in patients with metastatic CRPC. Enzalutamide inhibits multiple steps of AR signaling: (1) binding of androgens to AR, (2) AR nuclear translocation, and (3) association of AR with DNA.
Enzalutamide, an androgen receptor signaling inhibitor, induces tumor regression in a mouse model of castration-resistant prostate cancer.
Specimen part, Cell line
View SamplesTargets of Retinoic Acid (RA) and 3,4-didehydroretinoic acid (ddRA) were identified in primary human epidermal keratinocytes grown in the presence of atRA or ddRA for 4 and 24 hours.
The effect of two endogenous retinoids on the mRNA expression profile in human primary keratinocytes, focusing on genes causing autosomal recessive congenital ichthyosis.
Treatment
View SamplesDiffuse large B-cell lymphoma (DLBCL) is the most common form of lymphoma in adults. The disease exhibits a striking heterogeneity in gene expression profiles and clinical outcomes, but its genetic causes remain to be fully defined. Through whole genome and exome sequencing, we characterized the genetic diversity of DLBCL. In all, we sequenced 73 DLBCL primary tumors (34 with matched normal DNA). Separately, we sequenced the exomes of 21 DLBCL cell lines. We identified 322 DLBCL cancer genes that were recurrently mutated in primary DLBCLs. We identified recurrent mutations implicating a number of known and not previously identified genes and pathways in DLBCL including those related to chromatin modification (ARID1A and MEF2B), NF-B (CARD11 and TNFAIP3), PI3 kinase (PIK3CD, PIK3R1, and MTOR), B-cell lineage (IRF8, POU2F2, and GNA13), and WNT signaling (WIF1). We also experimentally validated a mutation in PIK3CD, a gene not previously implicated in lymphomas. The patterns of mutation demonstrated a classic long tail distribution with substantial variation of mutated genes from patient to patient and also between published studies. Thus, our study reveals the tremendous genetic heterogeneity that underlies lymphomas and highlights the need for personalized medicine approaches to treating these patients.
Genetic heterogeneity of diffuse large B-cell lymphoma.
Specimen part, Cell line
View SamplesWe used microarrays to examine gene expression levels from 95 unrelated CEPH-Utah individuals 0, 2 or 6 hours after treatment with 10Gy of ionizing radiation.
Stress-induced changes in gene interactions in human cells.
Cell line, Treatment, Time
View SamplesWe used microarrays to examine gene expression levels from 131 unrelated CEPH-Utah grandparents with either DMSO or tunicamycin.
Stress-induced changes in gene interactions in human cells.
Cell line, Treatment, Time
View SamplesThyroid hormones, thyroxine and triiodothyronine (T3) are crucial for cerebral cortex development acting through regulation of gene expression. To define the transcriptional program under T3 regulation we have performed RNA-Seq of T3-treated and untreated primary mouse cerebrocortical cells. The expression of 1,145 genes or 7.7% of expressed genes was changed upon T3 addition, of which 371 responded to T3 in the presence of cycloheximide indicating direct transcriptional regulation. The results were compared with available transcriptomic datasets of defined cellular types. In this way we could identify genomic targets of T3 in astrocytes and neurons, and in neuron subtypes, such as layer-specific neurons, and neurons expressing specific markers such as prepronociceptin, cholecystokinin, or cortistatin. T3 up-regulates mostly genes related to cell membrane events, such as G-protein signaling, neurotransmission, and ion transport, and down-regulates genes involved in nuclear events, such as cell division, M phase of cell cycle, and chromosome organization and segregation. Remarkably the transcriptomic changes induced by T3 sustain the transition from embryonic to adult patterns of gene expression. The results allowed us to define in molecular terms the elusive role of thyroid hormones on neocortical development. Overall design: Pregnant dams were euthanized on gestational day 17.5, and the fetuses were extracted and euthanized by decapitation. The cerebral cortices were dissected, disaggregated and finally the cells were suspended in culture medium. After 9 days incubation cells were incubated for 24 hours before adding T3 at a final concentration of 10 nM. The cells were harvested 24 hours later. Cells without T3 were incubated in parallel. Cerebral cortices from individual fetuses originated two replicas for the cell culture, one with T3 and another without T3. Number of samples: 6.
Global Transcriptome Analysis of Primary Cerebrocortical Cells: Identification of Genes Regulated by Triiodothyronine in Specific Cell Types.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Deep sequencing of the small RNA transcriptome of normal and malignant human B cells identifies hundreds of novel microRNAs.
Specimen part, Cell line
View SamplesBurkitt lymphoma is characterized by deregulation of MYC, but the contribution of other genetic mutations to the disease is largely unknown. Here, we describe the first completely sequenced genome from a Burkitt lymphoma tumor and germline DNA from the same affected individual. We further sequenced the exomes of 59 Burkitt lymphoma tumors and compared them to sequenced exomes from 94 diffuse large B-cell lymphoma (DLBCL) tumors. We identified 70 genes that were recurrently mutated in Burkitt lymphomas, including ID3, GNA13, RET, PIK3R1 and the SWI/SNF genes ARID1A and SMARCA4. Our data implicate a number of genes in cancer for the first time, including CCT6B, SALL3, FTCD and PC. ID3 mutations occurred in 34% of Burkitt lymphomas and not in DLBCLs. We show experimentally that ID3 mutations promote cell cycle progression and proliferation. Our work thus elucidates commonly occurring gene-coding mutations in Burkitt lymphoma and implicates ID3 as a new tumor suppressor gene.
Deep sequencing of the small RNA transcriptome of normal and malignant human B cells identifies hundreds of novel microRNAs.
Specimen part, Cell line
View SamplesHow cells in primary tumors initially become pro-metastatic is not understood. A previous genome-wide RNAi screen uncovered colon cancer metastatic suppressor and WNT promoting functions of TMED3, a member of the p24 ER-to-Golgi protein secretion family. Repression of WNT signaling upon knock-down (kd) of TMED3 might thus be sufficient to drive metastases. However, searching for transcriptional influences on other family members here we find that TMED3 kd leads to enhanced TMED9, that TMED9 acts downstream of TMED3 and that TMED9 kd compromises metastasis. Importantly, TMED9 pro-metastatic function is linked to but distinct from the repression of TMED3-WNT-TCF signaling. Functional rescue of the migratory deficiency of TMED9 kd cells identifies TGFa as a mediator of TMED9 pro-metastatic activity. Moreover, TMED9 kd compromises the membrane localization, and thus function, of TGFa. Analyses in three colon cancer cell types highlight a TMED9-dependent gene set that includes CNIH4, a member of the CORNICHON family of TGFa exporters. Our data indicate that TGFA and CNIH4, which display predictive value for disease-free survival, promote colon cancer cell metastatic behavior and suggest that TMED9 pro-metastatic function involves the modulation of the secretion of TGFa ligand. Finally, TMED9/TMED3 antagonism impacts WNT-TCF and GLI signaling, where TMED9 primacy over TMED3 leads to the establishment of a positive feedback loop together with CNIH4, TGFa and GLI1 that enhances metastases. We suggest that primary colon cancer cells can transition between two states characterized by secretion-transcription regulatory loops gated by TMED3 and TMED9 that modulate their metastatic proclivities. Overall design: CC14 and CC36, two primary colon cancer cells, were treated with control or shTMED9 expressing lentivirus. In addition, CC14 cells were also treated with shTMED3 expressing lentivirus. All the experiments were run in triplicates totaling 15 Samples.
The protein secretion modulator TMED9 drives CNIH4/TGFα/GLI signaling opposing TMED3-WNT-TCF to promote colon cancer metastases.
Specimen part, Disease stage, Subject
View Samples