The intestinal epithelium constitutes a crucial defense to the potentially life-threatening effects of gut microbiota. However, due to a complex underlying vasculature, hypoperfusion and resultant tissue ischemia pose a particular risk to function and integrity of the epithelium. The small ubiquitin-like modifier (SUMO) conjugation pathway critically regulates adaptive responses to metabolic stress and is of particular significance in the gut, as inducible knockout of the SUMO-conjugating enzyme Ubc9 results in rapid intestinal epithelial disintegration. Here we analyzed the pattern of individual SUMO isoforms in intestinal epithelium and investigated their roles in intestinal ischemia/reperfusion (I/R) damage. Immunostaining revealed that epithelial SUMO2/3 expression was almost exclusively limited to crypt epithelial nuclei in unchallenged mice. However, intestinal I/R or overexpression of Ubc9 caused a remarkable enhancement of epithelial SUMO2/3 staining along the crypt-villus axis. Unexpectedly, a similar pattern was found in SUMO1 knockout mice. Ubc9 transgenic mice, but also SUMO1 knockout mice were protected from I/R injury as evidenced by better preserved barrier function and blunted inflammatory responses. PCR array analysis of microdissected villus-tip epithelia revealed a specific epithelial contribution to reduced inflammatory responses in Ubc9 transgenic mice, as key chemotactic signaling molecules such as IL17A were significantly downregulated. Together, our data indicate a critical role particularly of the SUMO2/3 isoforms in modulating responses to I/R and provide the first evidence that SUMO1 deletion activates a compensatory process that protects from ischemic damage.
Ubc9 overexpression and SUMO1 deficiency blunt inflammation after intestinal ischemia/reperfusion.
Treatment
View SamplesMicroarray analysis of gene expression after transverse aortic constriction in mice: comparison of TAC vs. sham group at 48 hours, 10 days, and 3 weeks.
Microarray analysis of gene expression after transverse aortic constriction in mice.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Reprogramming factor expression initiates widespread targeted chromatin remodeling.
Specimen part
View SamplesDespite rapid progress in characterizing transcription factor-driven reprogramming of somatic cells to an induced pluripotent stem (iPS) cell state, many mechanistic questions still remain. To gain insight into the earliest events in the reprogramming process, we systematically analyzed the transcriptional and epigenetic changes that occur during early factor induction after discrete numbers of divisions. We observed rapid, genome-wide changes in the euchromatic histone modification, H3K4me2, at more than a thousand loci including large subsets of pluripotency or developmentally related gene promoters and enhancers. In contrast, patterns of the repressive H3K27me3 modification remained largely unchanged except for focused depletion specifically at positions where H3K4 methylation is gained. These chromatin regulatory events precede transcriptional changes within the corresponding loci. Our data provide evidence for an early, organized, and population-wide epigenetic response to ectopic reprogramming factors that clarify the temporal order through which somatic identity is reset during reprogramming.
Reprogramming factor expression initiates widespread targeted chromatin remodeling.
Specimen part
View SamplesThe recruitment of mesenchymal stem cells in order to reconstruct damaged cartilage of osteoarthritis joints is a challenging tissue engineering task. Vision towards this goal is blurred by a lack of knowledge about the underlying differences between chondrocytes and MSC during the chondrogenic cultivation process. The aim of this study was to shed light on the differences between chondrocytes and MSC occurring during chondral differentiation through tissue engineering.
Expression pattern differences between osteoarthritic chondrocytes and mesenchymal stem cells during chondrogenic differentiation.
Specimen part
View SamplesTargets of Retinoic Acid (RA) and 3,4-didehydroretinoic acid (ddRA) were identified in primary human epidermal keratinocytes grown in the presence of atRA or ddRA for 4 and 24 hours.
The effect of two endogenous retinoids on the mRNA expression profile in human primary keratinocytes, focusing on genes causing autosomal recessive congenital ichthyosis.
Treatment
View SamplesIonizing radiation (IR) has long been associated with reduced hematopoietic function and increased malignancies, although the mechanisms behind this relationship remain poorly understood. The carcinogenic effect of IR has been commonly attributed to the direct induction of DNA damage. We demonstrate that IR exposure results in long-term, somatically heritable, cell-intrinsic reductions in HSC self-renewal that is mediated by C/EBPa and reversed by Notch, both of which are associated with human leukemias. Remarkably, restoration of HSC self-renewal prevents selection for C/EBPa loss of function in previously irradiated HSC pools. We propose that environmental insults prompt HSC to initiate a program limiting their self-renewal to prevent damaged HSC from contributing to hematopoiesis. This "programmed mediocrity" is advantageous for the localized insults animals have evolved to deal with, but becomes tumor promoting when the entire HSC compartment is damaged, such as during total body irradiation, by increasing selective pressure for adaptive oncogenic mutations Overall design: Examination of mRNA levels in in vitro and in vivo Hematopoietic Stem Cell that exposed to IR Ionizing radiation (IR) or control. Each group has three replicates.
Contrasting roles for C/EBPα and Notch in irradiation-induced multipotent hematopoietic progenitor cell defects.
No sample metadata fields
View SamplesHuman pluripotent stem cells were differentiated into hematopoietic progenitors, which were then re-specified using defined transcription factors to resemble hematopoietic stem cells (HSC)
Induction of multipotential hematopoietic progenitors from human pluripotent stem cells via respecification of lineage-restricted precursors.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
H3K4 demethylation by Jarid1a and Jarid1b contributes to retinoblastoma-mediated gene silencing during cellular senescence.
Specimen part, Cell line
View SamplesCellular senescence is a tumor-suppressive program that involves chromatin reorganization and specific changes in gene expression that trigger an irreversible cell-cycle arrest. We have examined the effect of suppressing the histone demethylases Jarid1a and Jarid1b on the senescence-associated gene expression signatures.
H3K4 demethylation by Jarid1a and Jarid1b contributes to retinoblastoma-mediated gene silencing during cellular senescence.
Specimen part, Cell line
View Samples