Several studies indicate that SMN-containing mRNP complexes could be involved in the axonal localization of a large number of mRNAs. We have used murine motor neuron-like NSC-34 cells and RNA Immuno-Precipitation experiments coupled to microarray analyses to perform a genome-wide analysis of RNA species present in mRNP complexes containing the full length SMN protein (flSMN). In situ hybridization and immuno-fluorescence experiments performed on several candidates indicate that these mRNAs colocalize with the SMN protein in neurites and axons of differentiated NSC-34 cells. Moreover, they localize in cell processes in a SMN-dependent manner. Thus, low SMN levels might result in localization deficiencies of mRNAs required for axonogenesis.
Genome-wide identification of mRNAs associated with the protein SMN whose depletion decreases their axonal localization.
Specimen part, Cell line
View SamplesBiallelic inactivating mutations of the transcription factor 1 gene (TCF1), encoding hepatocyte nuclear factor 1a (HNF1a), were identified in 50% of hepatocellular adenomas (HCA) phenotypically characterized by a striking steatosis. To understand the molecular basis of this aberrant lipid storage, we performed a microarray transcriptome analysis validated by quantitative RT-PCR, western-blotting and lipid profiling. In mutated HCA, we showed a repression of gluconeogenesis coordinated with an activation of glycolysis, citrate shuttle and fatty acid synthesis predicting elevated rates of lipogenesis. Moreover, the strong dowregulation of L-FABP suggests that impaired fatty acid trafficking may also contribute to the fatty phenotype. In addition, transcriptional profile analysis of the observed deregulated genes in non-HNF1a-mutated HCA as well as in non-tumor livers allowed us to define a specific signature of the HNF1a-mutated HCA. In theses tumors, lipid composition was dramatically modified according to the transcriptional deregulations identified in the fatty acid synthetic pathway. Surprisingly, lipogenesis activation did not operate through SREBP-1 and ChREBP that were repressed. We conclude that steatosis in HNF1a-mutated HCA results mainly from an aberrant promotion of lipogenesis that is linked to HNF1a inactivation and that is independent of both SREBP-1 and ChREBP activation. Finally, our findings have potential clinical implications since lipogenesis can be efficiently inhibited by targeted therapies.
HNF1alpha inactivation promotes lipogenesis in human hepatocellular adenoma independently of SREBP-1 and carbohydrate-response element-binding protein (ChREBP) activation.
Sex, Specimen part, Disease
View SamplesThis work is part of an existing collaboration between the two laboratories, funded by the EU (EU-RTN-INTEGA). Both parties will share the cost of this microarray experiment. Background: We have demonstrated that ethylene-insensitive mutants and wild type(col-0) Arabidopsis plants treated with an ethylene perception inhibitor have increased levels of expression of genes, such as GASA1 and g-TIP, that are thought to be regulated by GA (Vriezen et al, unpublished results). However, this observation was based on an RNA gel blot analysis and therefore limited to few genes. Aim: To investigate whether plants with decreased ethylene perception are generally hypersensitive to GA or whether this effect is restricted to specific genes. We plan to undertake a complete transcriptome analysis of GA-treated wild type andetr1-1 plants. The aim is to identify genes that are induced directly as a result of the GA treatment, and we will therefore focus on the time window 0-3h. Tissues to be sampled: Plants will be grown in vitroon MS/2 containing 1% sucrose, pH 5.7, at 22 C,70% RH, under white light (54 PAR) and a photoperiod of 16h light/8h dark. Plants will be treated at 14 days and harvested entirely, i.e. roots and shoots are extracted together. Experimental set-up: Col-0 and the ethylene-insensitive mutant etr1-1 will be sprayed with 50 microM GA4 in water. GA4 is the major bio-active GA in Arabidopsis. Samples will be taken after 0, 30 min, 1h, and 3h. In order to correct for touch-induced genes a control, which is sprayed with water only and harvested at 1h, will be included for both genotypes. The total number of chips to be hybridized is 10. The time course with 4 data points is preferred to a single time point with 3 repeats, because it will allow us to follow the induction kinetics and identify early response genes. For each timepoint, RNA will be extracted from at least 40 individuals.
Reciprocal influence of ethylene and gibberellins on response-gene expression in Arabidopsis thaliana.
Specimen part
View SamplesInborn errors of lipid metabolism illustrate the importance of proper milk fat oxidation in newborn mammals. In the liver, a remarkable lipid catabolic competence is present at birth; however, it is unclear how this critical trait is acquired and regulated. In this work, we found that the genes required for milk lipid catabolism are already transcribed before birth in the term fetus (E19.5) and controlled by the peroxisome-proliferator activated receptor alpha (PPAR) in mouse liver. The developmental activity of PPAR strongly regulates fatty acid oxidation genes. Two days after birth (P2), during milk suckling, PPAR-null mice develop a congenital steatosis and milk protein oxidation is de-repressed to fuel an alternative energy pathway that maintains glucose homeostasis and postnatal growth. Our results demonstrate for the first time, the developmental role of PPAR in regulating the metabolic ability to use maternal milk as fuel in the early days of life.
Glucocorticoid receptor-PPARα axis in fetal mouse liver prepares neonates for milk lipid catabolism.
Specimen part
View SamplesInborn errors of lipid metabolism illustrate the importance of proper milk fat oxidation in newborn mammals. In the liver, a remarkable lipid catabolic competence is present at birth; however, it is unclear how this critical trait is acquired and regulated. In this work, we found that the genes required for milk lipid catabolism are already transcribed before birth in the term fetus (E19.5) and controlled by the peroxisome-proliferator activated receptor alpha (PPAR) in mouse liver. The developmental activity of PPAR strongly regulates fatty acid oxidation genes. Two days after birth (P2), during milk suckling, PPAR-null mice develop a congenital steatosis and milk protein oxidation is de-repressed to fuel an alternative energy pathway that maintains glucose homeostasis and postnatal growth. Our results demonstrate for the first time, the developmental role of PPAR in regulating the metabolic ability to use maternal milk as fuel in the early days of life.
Glucocorticoid receptor-PPARα axis in fetal mouse liver prepares neonates for milk lipid catabolism.
Sex, Specimen part
View SamplesGene signature determination of the effect of a new bromodomain inhibitor among a representative set of leukemic cell lines
BET inhibitor OTX015 targets BRD2 and BRD4 and decreases c-MYC in acute leukemia cells.
Cell line, Compound
View SamplesMammalian mRNAs are generated by complex and coordinated biogenesis pathways and acquire 5'-end m7G caps that play fundamental roles in processing and translation. Here we show that several selenoprotein mRNAs are not recognized efficiently by translation initiation factor eIF4E because they bear a hypermethylated cap. This cap modification is acquired via a 5end maturation pathway similar to that of the small nucle(ol)ar RNAs (sn- and snoRNAs). Our findings also establish that the trimethylguanosine synthase 1 (Tgs1) interacts with selenoprotein mRNAs for cap hypermethylation and that assembly chaperones and core proteins devoted to sn- and snoRNP maturation contribute to recruiting Tgs1 to selenoprotein mRNPs. We further demonstrate that the hypermethylated-capped selenoprotein mRNAs localize to the cytoplasm, are associated with polysomes and thus translated. Moreover, we found that the activity of Tgs1, but not of eIF4E, is required for the synthesis of the GPx1 selenoprotein in vivo.
Hypermethylated-capped selenoprotein mRNAs in mammals.
Cell line
View SamplesThree different cell populations (6 healthy B-lymphocytes, 6 leukemic CLL B-lymphocyte of indolent form and 5 leukemic CLL B-lymphocyte of aggressive form) were stimulated in vitro with an anti-IgM antibody, activating the B-cell receptor (BCR). We analyzed the gene expression at 4 time points (60, 90, 210 and 390 minutes). Each gene expression measurement is performed both in stimulated cells and in control unstimulated cells.
Reverse-engineering the genetic circuitry of a cancer cell with predicted intervention in chronic lymphocytic leukemia.
Specimen part
View SamplesFAN (Factor associated with neutral sphingomyelinase activation) is an adaptor protein that constitutively binds to TNF-R1. Microarray analysis was performed in fibroblasts derived from wild-type or FAN knockout mouse embryos to evaluate the role of FAN in TNF-induced gene expression.
FAN stimulates TNF(alpha)-induced gene expression, leukocyte recruitment, and humoral response.
Treatment
View SamplesPurpose: Diffuse large B cell lymphomas (DLBCL) frequently harbor mutations in the histone acetyltransferase CREBBP, however their functional contribution to lymphomagenesis remains largely unknown. This study aims at elucidating and characterizing the molecular pathways affected by mutations in CREBBP. Methods: U2932, a DLBCL cell line that has wild type expression of CREBBP was manipulated by CRISPR-Cas9 strategy to mutate one allele of CREBBP and examine the pathways affected. RNA was isolated using the NucleoSping RNA Kit (Macherey-Nagel) from five wild type (CREBBP+/+) and five heterozygous clones (CREBBP+/-). RNA quality was assessed by Bioanalyzer 2100 followed by library preparation using the TruSeq RNA Sample Prep Kit v4 (Illumina). Sequencing was subsequently performed on the Illumina HiSeq 2500 instrument. RNA-seq reads were quality-checked with fastqc, which computes various quality metrics for the raw reads. RNA-seq reads were mapped to the GRCh38 reference human genome using STAR and reads were counted according to Ensembl gene annotation using the featureCounts function in the Rsubread Bioconductor package. Statistical analysis of differential expression was conducted with the DESeq2 package. Overall design: Trascriptomic profiles of CREBBP+/+ and CREBBP+/- clones were generated by deep sequencing.
Inactivation of CREBBP expands the germinal center B cell compartment, down-regulates MHCII expression and promotes DLBCL growth.
Subject
View Samples