This SuperSeries is composed of the SubSeries listed below.
Genome-wide identification of expression quantitative trait loci (eQTLs) in human heart.
Sex, Age, Specimen part
View SamplesIn recent years genome-wide association studies (GWAS) have uncovered numerous chromosomal loci associated with various electrocardiographic traits and cardiac arrhythmia predisposition. A considerable fraction of these loci lie within inter-genic regions. Trait-associated SNPs located in putative regulatory regions likely exert their effect by modulating gene expression. Hence, the key to unraveling the molecular mechanisms underlying cardiac traits is to interrogate variants for association with differential transcript abundance by expression quantitative trait locus (eQTL) analysis. In this study we conducted an eQTL analysis of human heart. To this end, left ventricular mycardium samples from non-diseased human donor hearts were hybridized to Illumina HumanOmniExpress BeadChips for genotyping (n = 129) and Illumina Human HT12 Version 4 BeadChips (n = 129) for transcription profiling.
Genome-wide identification of expression quantitative trait loci (eQTLs) in human heart.
Sex, Age, Specimen part
View SamplesBy means of 3' end sequencing we provide a genome-wide, high-resolution polyadenylation map of the human heart. By sequencing 5 control en 5 dilated cardiomyopathy (DCM) myocardial specimens we investigate the difference in alternative polyadenylation (APA) in healthy and diseased hearts.
Genome-Wide Polyadenylation Maps Reveal Dynamic mRNA 3'-End Formation in the Failing Human Heart.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Regulation of constitutive and alternative splicing by PRMT5 reveals a role for Mdm4 pre-mRNA in sensing defects in the spliceosomal machinery.
Specimen part, Treatment
View SamplesProtein Arginine MethylTransferase 5 (PRMT5) is known to mediate epigenetic control on chromatin and to functionally regulate components of the splicing machinery. In this study we show that selective deletion of PRMT5 in different organs leads to cell cycle arrest and apoptosis. At the molecular level, PRMT5 depletion results in reduced methylation of Sm proteins, aberrant constitutive splicing and in the Alternative Splicing (AS) of specific mRNAs. We identify Mdm4 as one of these mRNAs, which due to its weak 5-Donor site, acts as a sensor of splicing defects and transduces the signal to activate the p53 response, providing a mechanistic explanation of the phenotype observed in PRMT5 conditional knockout mice. Our data demonstrate a key role of PRMT5, together with p53, as guardians of the transcriptome. This will have fundamental implications in our understanding of PRMT5 activity, both in physiological conditions, as well as pathological conditions, including cancer and neurological diseases.
Regulation of constitutive and alternative splicing by PRMT5 reveals a role for Mdm4 pre-mRNA in sensing defects in the spliceosomal machinery.
Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
MYC regulates the core pre-mRNA splicing machinery as an essential step in lymphomagenesis.
Specimen part, Treatment
View SamplesmiR-222 overexpression leads to promotion of proliferation and hypertrophy and inhibition of apoptosis in in primary neonatal rat ventricular cardiomyocytes (NRVMs).
miR-222 is necessary for exercise-induced cardiac growth and protects against pathological cardiac remodeling.
Specimen part
View SamplesOver-expressed MYC binds to virtually all active promoters within a cell, although with different binding affinities, and modulates gene expression, both positively and negatively. Here, we show that during lymphomagenesis in E-myc transgenic mice, MYC directly up-regulates the transcription of the core snRNP assembly genes, including PRMT5, an arginine methyltransferase, that methylates Sm proteins as an early step in lymphomagenesis. This coordinated regulatory effect is direct and is critical for snRNP biogenesis, the maintenance of effective mRNA splicing and cellular viability in cycling cells, in either fibroblasts or B-cells.
MYC regulates the core pre-mRNA splicing machinery as an essential step in lymphomagenesis.
Specimen part
View SamplesTranscription regulation involves enzyme-mediated changes in chromatin structure. Here, we describe a novel mode of histone crosstalk during gene silencing, in which histone H2A monoubiquitylation is coupled to the removal of histone H3 Lys 36 dimethylation (H3K36me2). This pathway was uncovered through the identification of dRING-associated factors (dRAF), a novel Polycomb group (PcG) silencing complex harboring the histone H2A ubiquitin ligase dRING, PSC and the F-box protein, and demethylase dKDM2. In vivo, dKDM2 shares many transcriptional targets with Polycomb and counteracts the histone methyltransferases TRX and ASH1. Importantly, cellular depletion and in vitro reconstitution assays revealed that dKDM2 not only mediates H3K36me2 demethylation but is also required for efficient H2A ubiquitylation by dRING/PSC. Thus, dRAF removes an active mark from histone H3 and adds a repressive one to H2A. These findings reveal coordinate trans-histone regulation by a PcG complex to mediate gene repression.
dKDM2 couples histone H2A ubiquitylation to histone H3 demethylation during Polycomb group silencing.
Cell line
View SamplesPurpose: To characterize transcriptional changes associated with homozygous inactivation of Dot1l or Mll1 in MN1 driven AML Methods: We sequenced mRNA from murine LSK-cells transformed using forced expression of MN1 (MSCV-MN1-IRES-GFP), and transduced with Cre-vector to inactivate either Dot1l or Mll1. Cells were sorted for Cre-expression (pTomato fluorescent marker) or expression of an inert control vector. Results: Inactivation of either Dot1l or Mll1 in this model leads to a substantial delay or complete abrogation of leukemia development.Loss of Dot1l or Mll1 are associated with gene expression changes that have substantial overlap. In addition, genes that are downregulated follwing inactivation of Dot1l or Mll1 have substantial overlap with the gene set upregulated in MN1 transduced CMPs. Conclusions: MN1 mediated leukemogenesis is associated with a gene expression program that dependes on Mll1 and Dot1l Overall design: Examination of mRNA levels between Dot1l f/f and Dot1l ko, and Mll1 f/f and Mll1 ko.
MLL1 and DOT1L cooperate with meningioma-1 to induce acute myeloid leukemia.
Specimen part, Cell line, Subject
View Samples