refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 305 results
Sort by

Filters

Technology

Platform

accession-icon GSE57048
Irp2 mediates cigarette smoke-induced bronchitis and emphysema via regulation of cytochrome c oxidase and mitochondrial iron loading.
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Chronic obstructive pulmonary disease (COPD), the fourth leading cause of death globally, is influenced by both cigarette smoking and genetic determinants. We have previously identified iron-responsive element binding protein 2 (IRP2) as a candidate COPD susceptibility gene based on genetic association studies, with IRP2 increased in the lungs of COPD patients. Here we demonstrate that mice deficient in IRP2 are protected from cigarette smoke (CS)-induced COPD. Using RIP-Seq, RNA-Seq, gene expression and pathway analysis, we identify IRP2 as a regulator of mitochondrial function in the lung. We show that an increase in IRP2 results in a cytochrome c oxidase (COX)-dependent alteration in oxidative capacity and mitochondrial-iron dysfunction involving frataxin. We demonstrate that mice with impaired COX or frataxin activity have altered responses to CS and show that overexpressing IRP2 in vivo alters mitochondrial dynamics. These data suggest a critical role of the mitochondria-iron axis in mediating the pathogenesis of COPD.

Publication Title

Mitochondrial iron chelation ameliorates cigarette smoke-induced bronchitis and emphysema in mice.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP184537
TFEB-driven lysosomal biogenesis is pivotal for PGC1a-dependent renal stress resistance
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Because injured mitochondria can accelerate cell death through the elaboration of oxidative free radicals and other mediators, it is somewhat paradoxical that proliferator gamma coactivator 1-alpha (PGC1a), a stimulator of increased mitochondrial abundance, protects stressed renal cells instead of potentiating injury. Here we report that PGC1a's induction of lysosomes via transcription factor EB (TFEB) may be pivotal for kidney protection. CRISPR and stable gene transfer showed that PGC1a knockout tubular cells were sensitized to the genotoxic stressor cisplatin whereas transgenic cells were protected. The biosensor mtKeima unexpectedly revealed that cisplatin blunts mitophagy both in cells and mice. PGC1a not only counteracted this effect but also raised basal mitophagy, as did the downstream mediator nicotinamide adenine dinucleotide (NAD+). PGC1a did not consistent affect known autophagy pathways modulated by cisplatin. Instead RNA sequencing identified coordinated regulation of lysosomal biogenesis via TFEB. This effector pathway was sufficiently important that inhibition of TFEB or lysosomes unveiled a striking harmful effect of excess PGC1a in cells and conditional mice. These results uncover an unexpected effect of cisplatin on mitophagy and PGC1a's exquisite reliance on lysosomes for kidney protection. Finally, the data illuminate TFEB as a novel target for renal tubular stress resistance. Overall design: 12 samples in total = 3 replicates each from 4 groups

Publication Title

TFEB-driven lysosomal biogenesis is pivotal for PGC1α-dependent renal stress resistance.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE35258
Comparison of low water potential (drought)-regulated gene expression in wild type (Col-0) and the hai1-2 (At5g59220) mutant
  • organism-icon Arabidopsis thaliana
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

The Clade A PP2C Highly ABA-Induced1 (HAI1, At5g59220) is strongly up-regulated by low water potential in an ABA-dependent manner. Using knockout mutants of hai1, we found that HAI1 functions as a negative regulator of low water potential-induced proline and osmoregulatory solute accumulation. We also found a relatively weak and limited interaction of HAI1 with the RCAR/PYL family of ABA receptors. This, plus its induced expression, suggest that HAI1 remains active during stress and attenuates specific aspects of drought response.

Publication Title

Unique drought resistance functions of the highly ABA-induced clade A protein phosphatase 2Cs.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE71237
Comparison of low water potential (drought) regulated gene expression in wild type (Col-0) and egr1-1egr2-1 (At3g05640/At5g27930) mutant.
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Two Clade E Growth Regulating PP2Cs EGR1 and EGR2 (EGR1, At3g05640; EGR2, At5g27930) are strongly up regulated by low water but much less affected by ABA. EGR mutants maintained higher seedling root elongation and dry weight at low water potential and higher levels of stress protective metabolite proline.

Publication Title

Protein Phosphatase 2Cs and <i>Microtubule-Associated Stress Protein 1</i> Control Microtubule Stability, Plant Growth, and Drought Response.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE64052
Gene expression changes during resistance toward vascular endothelial growth factor receptor (VEGFR) tyrosine kinase inhibitor (TKI) therapy in renal cell carcinoma (RCC)
  • organism-icon Homo sapiens
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This study was performed to understand the gene expression changes that accompany treatment of renal cell carcinoma (RCC) with vascular endothelial growth factor receptor (VEGFR) tyrosine kinase inhibitor (TKI) therapy. Human RCC cell lines were implanted into the flanks of nude beige mice, allowed to reach 12mm in long axis, and then treated with TKIs (sunitinib or sorafenib). Tumors were excised at 2 timepoints (prior to any therapy and at the 20mm endpoint of the study) and gene expression analysis was performed.

Publication Title

Anti-S1P Antibody as a Novel Therapeutic Strategy for VEGFR TKI-Resistant Renal Cancer.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE8512
Expression data from mouse bone marrow macrophages from a strain intercross
  • organism-icon Mus musculus
  • sample-icon 207 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Bone marrow macrophages were cultured from 16 week old apoE-deficient F2 mice from an AKRxDBA/2 intercross

Publication Title

Sex specific gene regulation and expression QTLs in mouse macrophages from a strain intercross.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE54709
Expression data from 786-O renal cell cancer cells treated with pentamidine
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix HT Human Genome U133A Array (hthgu133a)

Description

While early stages of clear cell renal cell carcinoma (ccRCC) are curable, survival outcome for metastatic ccRCC remains poor. The purpose of the current study was to apply a new individualized bioinformatics analysis (IBA) strategy to these transcriptome data in conjunction with Gene Set Enrichment Analysis of the Connectivity Map (C-MAP) database to identify and reposition FDA-approved drugs for anti-cancer therapy. We demonstrated that one of the drugs predicted to revert the RCC gene signature towards normal kidney, pentamidine, is effective against RCC cells in culture and in a RCC xenograft model. Most importantly, pentamidine slows tumor growth in the 786-O human ccRCC xenograft mouse model. To determine which genes are regulated by pentamidine in a human RCC cell line, 786-O, we treated these cells with pentamidine and performed transcriptional profiling analysis.

Publication Title

Computational repositioning and preclinical validation of pentamidine for renal cell cancer.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon SRP106719
The deacetylase activity of histone deacetylase 3 is required for productive VDJ recombination and B cell development [RNA-seq]
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Histone deacetylase 3 (HDAC3) is the catalytic component of NCoR/SMRT corepressor complexes that mediate the actions of transcription factors implicated in the regulation of B cell development and function. We crossed Hdac3 conditional knockout mice with Mb1-Cre knockin animals to delete Hdac3 in early progenitor B cells. The spleens of Hdac3F/-Mb1-Cre+/- mice were virtually devoid of mature B cells, and B220+CD43+ B cell progenitors accumulated within the bone marrow. Quantitative deep sequencing of the immunoglobulin heavy chain locus from B220+CD43+ populations identified a defect in VHDJH recombination with a severe reduction in productive rearrangements, which directly corresponded to the loss of pre-B cells from Hdac3D/- bone marrow. For Hdac3D/- B cells that did show productive VDJ rearrangement, there was significant skewing toward the incorporation of proximal VH gene segments and a corresponding reduction in distal VH gene segment usage. While transcriptional effects within these loci were modest, Hdac3D/- progenitor cells displayed global changes in chromatin structure that likely hindered effective distal V-DJ recombination. Re-introduction of wild type Hdac3 restored normal B cell development, whereas an Hdac3 point mutant lacking deacetylase activity failed to complement this defect. Thus, the deacetylase activity of Hdac3 is required for the generation of mature B cells. Overall design: Bone marrow was isolated from Hdac3+/+Mb1cre+/- or Hdac3F/-Mb1cre+/- mice at 8 weeks of age. B220+CD43+ B cells were isolated from marrow by FACS and cells from two mice were pooled per sample. Total RNA isolated by Trizol extraction.

Publication Title

Deacetylase activity of histone deacetylase 3 is required for productive <i>VDJ</i> recombination and B-cell development.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP158618
Using Gjd3-CreEGFP mice to examine atrioventricular node morphology and composition
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconNextSeq 500

Description

Gjd3-CreEGFP mice is a novel genetic tool to study the structural and molecular signatures of Atrioventricular Node (AVN) at a high resolution. Overall design: Focusing on the cardiac conduction system, we developed and rigorously characterized a geentic tool Gjd3-CreEGFP to perform in-depth analysis of AVN structure and composition. Utilizing this AVN-specific mouse model, we performed scRNA-Seq on neonatal Gjd3-CreEGFP mice to guide our single-cell atlas of the Atrio-ventricular conduction system (AVCS).

Publication Title

Using Gjd3-CreEGFP mice to examine atrioventricular node morphology and composition.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE10041
Genomic Counter-Stress Changes Induced by Mind-Body Practice
  • organism-icon Homo sapiens
  • sample-icon 69 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Mind-body practices that elicit the relaxation response (RR) have been used worldwide for millennia to prevent and treat disease. The RR is believed to be the counterpart to stress response and is characterized by decreased oxygen consumption, increased exhaled nitric oxide, and reduced psychological distress. Individuals experiencing chronic psychological stress have the opposite pattern of physiology and a characteristic transcriptional profile. We hypothesized that consistent, long-term practice of RR techniques results in characteristic changes in gene expression. We tested this hypothesis by assessing the transcriptional profile of whole blood in healthy, long-term practitioners of daily RR practice (group M) in comparison to healthy controls (group N1). The signature obtained has been validated on new subject data.

Publication Title

Genomic counter-stress changes induced by the relaxation response.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact